Advertisement

Role of Pseudomonas aeruginosa lipopolysaccharides in modulation of biofilm and virulence factors of Enterobacteriaceae

  • Shaymaa H. Abdel-RhmanEmail author
Original Article

Abstract

Enterobacteriaceae members are largely distributed in the environment and responsible for a wide range of bacterial infections in hospitalized patients. Pseudomonas aeruginosa (P. aeruginosa) causes severe nosocomial infections associated with severe inflammation due to its potent virulent factors including lipopolysaccharide (LPS). The aim of this study is to assess the bacterial LPS effect on Enterobacteriaceae biofilm and other virulence factors in vitro. The effect of P. aeruginosa LPS on biofilm formation of two other species of Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) was assessed using a standard biofilm assay. PCR was performed on genes of biofilm and virulence factors. Expression of biofilm, type-1-fimbriae and serum resistance genes in treated and untreated cells was measured with RT-PCR. P. aeruginosa LPS has the ability to stimulate biofilm formation and stabilize the already formed biofilm significantly in all tested strains. In addition, LPS significantly increased the level of expression of Bss, FimH, and Iss genes when measured by RT-PCR. P. aeruginosa LPS has a direct stimulatory effect on the biofilm formation, type-1-fimbriae, and serum resistance in both E. coli and K. pneumoniae. So, the presence of P. aeruginosa in mixed infection with Enterobactereacea leads to increase their virulence.

Keywords

P. aeruginosa LPS E. coli K. pneumoniae Biofilm Virulence factors 

Notes

Acknowledgements

All thanks and appreciation to Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada, for providing the standard strains used in this study. This work was performed at the Microbiology Department, Faculty of Pharmacy, Mansoura University, Egypt and Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Taibah University, AlMadinah Al Munawwarah, Kingdom of Saudi Arabia.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Abdel-Rhman SH, Rizk DE (2016) Effect of tyrosol on Staphylococcus aureus antimicrobial susceptibility, biofilm formation and virulence factors. Afr J Microbiol Res 10:687–693CrossRefGoogle Scholar
  2. Abdelmegeed ES, Barwa R, Galil KHAE (2015) Comparative study on prevalence and association of some virulence factors with extended spectrum betalactamases and AmpC producing Escherichia coli. Afr J Microbiol Res 9:1165–1174CrossRefGoogle Scholar
  3. Aurell CA, Wistrom AO (1998) Critical aggregation concentrations of Gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun 253:119–123.  https://doi.org/10.1006/bbrc.1998.9773 CrossRefPubMedGoogle Scholar
  4. Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake LP (2010) Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59:1225–1234.  https://doi.org/10.1099/jmm.0.021832-0 CrossRefPubMedGoogle Scholar
  5. Bandara HM, Yau JY, Watt RM, Jin LJ, Samaranayake LP (2009) Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol 58:1623–1631.  https://doi.org/10.1099/jmm.0.012989-0 CrossRefPubMedGoogle Scholar
  6. Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian Omran D (2010) A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Maedica (Buchar) 5:111–115Google Scholar
  7. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289PubMedPubMedCentralGoogle Scholar
  8. Benitez JA, Spelbrink RG, Silva A, Phillips TE, Stanley CM, Boesman-Finkelstein M, Finkelstein RA (1997) Adherence of Vibrio cholerae to cultured differentiated human intestinal cells: an in vitro colonization model. Infect Immun 65:3474–3477PubMedPubMedCentralGoogle Scholar
  9. Dobrindt U (2005) (Patho-)genomics of Escherichia coli. Int J Med Microbiol 295:357–371.  https://doi.org/10.1016/j.ijmm.2005.07.009 CrossRefPubMedGoogle Scholar
  10. Eberl L et al (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136CrossRefGoogle Scholar
  11. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633.  https://doi.org/10.1038/nrmicro2415 CrossRefPubMedGoogle Scholar
  12. Galil KAE, El-Mahdy A, Naggar WE, Hassan R, Sawy aEE (2011) Phenotypic and genotypic expression of some virulence factors in Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in Mansoura hospitals. Egypt J Med Microbiol 20:67–77Google Scholar
  13. Goncalves Mdos S et al (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One 9:e99995.  https://doi.org/10.1371/journal.pone.0099995PONE-D-14-05673 CrossRefPubMedGoogle Scholar
  14. Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434CrossRefGoogle Scholar
  15. JR J, TA R (2002) Extraintestinal pathogenic Escherichia coli: “the other bad E coli”. J Lab Clin Med 139:155–162CrossRefGoogle Scholar
  16. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140.  https://doi.org/10.1038/nrmicro818 CrossRefPubMedGoogle Scholar
  17. King LB, Swiatlo E, Swiatlo A, McDaniel LS (2009) Serum resistance and biofilm formation in clinical isolates of Acinetobacter baumannii. FEMS Immunol Med Microbiol 55:414–421.  https://doi.org/10.1111/j.1574-695X.2009.00538.x CrossRefPubMedGoogle Scholar
  18. Lejeune P (2003) Contamination of abiotic surfaces: what a colonizing bacterium sees and how to blur it. Trends Microbiol 11:179–184CrossRefGoogle Scholar
  19. Li B et al (2018) Overexpression of outer membrane protein X (OmpX) compensates for the effect of TolC inactivation on biofilm formation and curli production in extraintestinal pathogenic Escherichia coli (ExPEC). Front Cell Infect Microbiol 8:208.  https://doi.org/10.3389/fcimb.2018.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39CrossRefGoogle Scholar
  21. Manu Chaudhary, Kumar S, Payasi A (2013) Role of CSE1034 in Escherichia coli biofilm destruction. J Microb Biochem Technol 5:054–058Google Scholar
  22. Mittal S, Sharma M, Chaudhary U (2015) Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog Glob Health 109:26–29.  https://doi.org/10.1179/2047773215Y.0000000001 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mokady D, Gophna U, Ron EZ (2005) Virulence factors of septicemic Escherichia coli strains. Int J Med Microbiol 295:455–462.  https://doi.org/10.1016/j.ijmm.2005.07.007 CrossRefPubMedGoogle Scholar
  24. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC (2005) Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 55:500–505.  https://doi.org/10.1093/jac/dki023 CrossRefPubMedGoogle Scholar
  25. Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38:417–432.  https://doi.org/10.1146/annurev.me.38.020187.002221 CrossRefPubMedGoogle Scholar
  26. Nobile CJ, Mitchell AP (2007) Microbial biofilms: e pluribus unum. Curr Biol 17:R349–R353.  https://doi.org/10.1016/j.cub.2007.02.035 CrossRefPubMedGoogle Scholar
  27. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79.  https://doi.org/10.1146/annurev.micro.54.1.4954/1/49 CrossRefPubMedGoogle Scholar
  28. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304CrossRefGoogle Scholar
  29. Pawlak A et al (2017) Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide O-antigen containing sialic acid. Int J Mol Sci 18.  https://doi.org/10.3390/ijms18102022
  30. Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297:277–295.  https://doi.org/10.1016/j.ijmm.2007.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293CrossRefGoogle Scholar
  32. Rendueles O, Kaplan JB, Ghigo J-M (2012) Antibiofilm polysaccharides. Environ Microbiol.  https://doi.org/10.1111/j.1462-2920.2012.02810
  33. Rossi E, Paroni M, Landini P (2018) Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol.  https://doi.org/10.1111/jam.14089
  34. S M, M S, U C (2015) Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog Glob Health 109:26–29CrossRefGoogle Scholar
  35. Samaranayake LP (1990) Oral candidosis: an old disease in new guises. Dent Update 17:36–38PubMedGoogle Scholar
  36. Seaton D (ed) (2000) Pneumonia. Vol 1. Crofton and Douglas’s respiratory diseases. Blackwell Science, MaldenGoogle Scholar
  37. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821CrossRefGoogle Scholar
  38. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley HL (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae. Infect Immun 79:4753–4763.  https://doi.org/10.1128/IAI.05621-11 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663–674CrossRefGoogle Scholar
  40. Tracey KJ et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664.  https://doi.org/10.1038/330662a0 CrossRefPubMedGoogle Scholar
  41. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496–506.  https://doi.org/10.1016/j.tim.2008.07.004 CrossRefPubMedGoogle Scholar
  42. Witso IL, Benneche T, Vestby LK, Nesse LL, Lonn-Stensrud J, Scheie AA (2014) Thiophenone and furanone in control of Escherichia coli O103:H2 virulence. Pathog Dis 70:297–306.  https://doi.org/10.1111/2049-632X.12128 CrossRefPubMedGoogle Scholar
  43. X L, Z Y, J X (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:352–362Google Scholar

Copyright information

© Università degli studi di Milano 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of PharmacyTaibah UniversityAlMadinah Al MunawwarahKingdom of Saudi Arabia
  2. 2.Department of Microbiology and Immunology, Faculty of PharmacyMansoura UniversityMansouraEgypt

Personalised recommendations