Advertisement

Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. isolated from ruminal fluid

  • Yasmin Neves Vieira Sabino
  • Romário Costa Fochat
  • Junior Cesar Fernandes Lima
  • Marlice Teixeira Ribeiro
  • Pedro Braga Arcuri
  • Jailton da Costa Carneiro
  • Marco Antônio Machado
  • Daniele Ribeiro de Lima Reis
  • Alessandra Barbosa Ferreira Machado
  • Humberto Moreira Húngaro
  • João Batista Ribeiro
  • Aline Dias Paiva
Original Article
  • 10 Downloads

Abstract

The production of bacteriocins is frequently described in high microbial diversity environments. The aims of this study were to screen Streptococcus spp. isolated from rumen for their antibacterial potential and to determine the presence of post-translational modification genes for lantibiotic class of bacteriocins. The isolates were tested for production of antibacterial compounds by the spot-on-lawn assay. Presence of interfering factors and the sensitivity to proteinase K were evaluated. The ruminal bacteria were identified by 16S rRNA gene sequencing and the subspecific discrimination of the isolates belonging to the same specie was performed by PFGE. The presence of lantibiotic post-translational modification genes (lanB, lanC, and lanM) into bacterial genomes was performed by PCR. The bacteriocin-like inhibitory substances showed broad inhibitory activity and the producer cells were identified as S. equinus, S. lutetiensis, and S. gallolyticus. According to PFGE, the isolates identified as S. equinus belong to different strains. Three ruminal isolates showed at least one of the lantibiotic post-translational modification genes, and lanC was more frequently detected (75%). The production of broad-spectrum bacteriocin-like inhibitory substances by rumen strains suggests that antimicrobial peptides may play an important role in competition in the complex ruminal ecosystem.

Keywords

Bacteriocin Rumen Streptococcus sp. Antibacterial activity Lantibiotic lanC 

Notes

Funding

This work was supported by Minas Gerais State Funding Agency (FAPEMIG) and Brazilian National Council for Scientific and Technological Development (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 5:403–410CrossRefGoogle Scholar
  2. Alvarez-Sieiro P, Montalbán-López M, Mu D et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barbosa AA, Mantovani HC, Jain S (2017) Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 3:1–13Google Scholar
  4. Benson JA, Ferrieri P (2001) Rapid pulsed-field gel electrophoresis method for group B streptococcus isolates. J Clin Microbiol 39:3006–3008CrossRefPubMedPubMedCentralGoogle Scholar
  5. Booth SJ, Johnson JL, Wilkins TD (1977) Bacteriocin production by strains of Bacteroides isolated from human feces and the role of these strains in the bacterial ecology of the colon. Antimicrob Agents Chemother 11:718–724CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chakchouk-Mtibaa A, Elleuch L, Smaoui S et al (2014) An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe 27:1–6CrossRefPubMedGoogle Scholar
  7. Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100Google Scholar
  8. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacterioicns: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20CrossRefPubMedGoogle Scholar
  9. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefPubMedGoogle Scholar
  10. Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3:107–122CrossRefPubMedGoogle Scholar
  11. Drider D, Bendali F, Naghmouchi K et al (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8:177–182CrossRefPubMedGoogle Scholar
  12. Escano J, Stauffer B, Brennan J et al (2015) Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. J Bacteriol 197:1173–1184CrossRefPubMedPubMedCentralGoogle Scholar
  13. Espeche MC, Otero MC, Sesma F et al (2009) Screening of surface properties and antagonistic substances production by lactic acid bacteria isolated from the mammary gland of healthy and mastitic cows. Vet Microbiol 135:346–357CrossRefPubMedGoogle Scholar
  14. Hillman JD, Novák J, Sagura E et al (1998) Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66:2743–2749PubMedPubMedCentralGoogle Scholar
  15. Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241CrossRefPubMedGoogle Scholar
  16. Joachimsthal EL, Reeves RK, Hung J et al (2010) Production of bacteriocins by Streptococcus bovis strains from Australian ruminants. J Appl Microbiol 108:428–436CrossRefPubMedGoogle Scholar
  17. Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kabuki T, Kawai Y, Uenishi H et al (2011) Gene cluster for biosynthesis of thermophilin 1277--a lantibiotic produced by Streptococcus thermophilus SBT1277, and heterologous expression of TepI, a novel immunity peptide. J Appl Microbiol 110:641–649CrossRefGoogle Scholar
  19. Kalmokoff ML, Cyr TD, Hefford MA et al (2003) Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrosolvens AR10: characterization of the gene and peptide. Can J Microbiol 49:763–773CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K et al (2017) Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl Microbiol Biotechnol 101:1323–1335CrossRefPubMedGoogle Scholar
  21. Kisidayová S, Lauková A, Jalc D (2009) Comparison of nisin and monensin effects on ciliate and selected bacterial populations in artificial rumen. Folia Microbiol 54:527–532CrossRefGoogle Scholar
  22. Li SW, Chen YS, Lee YS et al (2017) Comparative genomic analysis of bacteriocin-producing Weissella cibaria 110. Appl Microbiol Biotechnol 101:1227–1237CrossRefPubMedGoogle Scholar
  23. Li Y, Xiang Q, Zhang Q et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215CrossRefPubMedGoogle Scholar
  24. Mantovani HC, Kam DK, Ha JK et al (2001) The antibacterial activity and sensitivity of Streptococcus bovis strains isolated from the rumen of cattle. FEMS Microbial Ecol 37:223–229Google Scholar
  25. Mantovani HC, Russell JB (2002) The ability of a bacteriocin of Streptococcus bovis HC5 (bovicin HC5) to inhibit Clostridium aminophilum, an obligate amino acid fermenting bacterium from the rumen. Anaerobe 8:247–252CrossRefGoogle Scholar
  26. Mantovani HC, Hu H, Worobo RW et al (2002) Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:3347–3352CrossRefPubMedGoogle Scholar
  27. McAuliffe O, Ryan MP, Ross RP et al (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445Google Scholar
  28. Moraes PM, Perin LM, Todorov SD et al (2012) Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. J Appl Microbiol 113:318–328CrossRefPubMedGoogle Scholar
  29. Oliveira SD, Santos LR, Schuch DM et al (2002) Detection and identification of salmonellas from poultry-related samples by PCR. Vet Microbiol 87:25–35CrossRefPubMedGoogle Scholar
  30. Ortolani MB, Moraes PM, Perin LM et al (2010) Molecular identification of naturally occurring bacteriocinogenic and bacteriocinogenic-like lactic acid bacteria in raw milk and soft cheese. J Dairy Sci 93:2880–2886CrossRefPubMedGoogle Scholar
  31. Perin LM, Nero LA (2014) Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis. BMC Microbiol 14:1–9CrossRefGoogle Scholar
  32. Rodriguez E, Gonzalez B, Gaya P et al (2000) Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int Dairy J 10:7–15CrossRefGoogle Scholar
  33. Russell JB, Mantovani HC (2002) The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J Mol Microbiol Biotechnol 4:347–355PubMedGoogle Scholar
  34. Russell JB, Strobel HJ (1989) Effect of ionophores on ruminal fermentation. Appl Environ Microbiol 55:1–6PubMedPubMedCentralGoogle Scholar
  35. Settani L, Corsetti A (2008) Application of bacteriocins in vegetable food preservation. Int J Food Microbiol 121:123–138CrossRefGoogle Scholar
  36. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:4522–4529PubMedPubMedCentralGoogle Scholar
  37. Turner JW, Jordan HV (1981) Bacteriocin–like activity within the genus Actinomyces. J Dental Res 60:1000–1007CrossRefGoogle Scholar
  38. Vaillancourt K, LeBel G, Frenette M et al (2015) Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig. PLoS One 10:e0117245CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang HT, Chen IH, Hsu JT (2012) Production and characterization of a bacteriocin from ruminal bacterium Ruminococcus albus 7. Biosci Biotechnol Biochem 76:34–41CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang J, Ma H, Ge X et al (2014) Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge. PLoS One 9:e97121CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wescombe PA, Dyet KH, Dierksen KP et al (2012) Salivaricin G32, a homolog of the prototype Streptococcus pyogenes nisin-like lantibiotic SA-FF22, produced by the commensal species Streptococcus salivarius. Int J Microbiol 2012:1–10CrossRefGoogle Scholar
  42. Whitford MF, McPherson MA, Forster RJ et al (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67:569–574CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wirawan RE, Klesse NA, Jack RW et al (2006) Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72:1148–1156CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yi H, Zhang L, Tuo Y et al (2010) A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control 21:426–430CrossRefGoogle Scholar
  45. Zhao X, van der Donk WA (2016) Structural characterization and bioactivity analysis of the two-component lantibiotic Flv system from a ruminant bacterium. Cell Chem Biol 18:246–256CrossRefGoogle Scholar
  46. Zou W, Chen HC, Hise KB et al (2013) Meta-analysis of pulsed-field gel electrophoresis fingerprints based on a constructed Salmonella database. PLoS One 8:e59224CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zou W, Lin WJ, Foley SL et al (2010) Evaluation of pulsed-field gel electrophoresis profiles for identification of Salmonella serotypes. J Clin Microbiol 48:3122–3126CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  • Yasmin Neves Vieira Sabino
    • 1
  • Romário Costa Fochat
    • 1
  • Junior Cesar Fernandes Lima
    • 2
  • Marlice Teixeira Ribeiro
    • 2
  • Pedro Braga Arcuri
    • 2
  • Jailton da Costa Carneiro
    • 2
  • Marco Antônio Machado
    • 2
  • Daniele Ribeiro de Lima Reis
    • 2
  • Alessandra Barbosa Ferreira Machado
    • 3
  • Humberto Moreira Húngaro
    • 1
  • João Batista Ribeiro
    • 2
  • Aline Dias Paiva
    • 3
  1. 1.Faculdade de FarmáciaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Embrapa Gado de LeiteEmbrapaJuiz de ForaBrazil
  3. 3.Instituto de Ciências Biológicas e NaturaisUniversidade Federal do Triângulo MineiroUberabaBrazil

Personalised recommendations