Advertisement

Annals of Microbiology

, Volume 68, Issue 12, pp 863–870 | Cite as

First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize

  • Noemi Carla Baron
  • Nágila Torrini Alves Costa
  • Dinalva Alves Mochi
  • Everlon Cid RigobeloEmail author
Original Article

Abstract

Maize is one of the most important crops worldwide. It provides food for humans and animals and is used in biotechnological and industrial processes to produce a wide variety of products. The phosphorus (P) requirement for its development and production is high, but the absorption efficiency of this nutrient is insufficient to meet its requirements. The use of P-solubilizing fungi can increase this efficiency, thus reducing the amount of fertilizers applied to the crops. Therefore, this study aimed to verify the potential use of A. sydowii and A. brasiliensis and their effect in the field as bioinoculants when associated with three P fertilization doses. The experiment was carried out in a maize field, and treatments were presence and absence of fungi associated with P mineral fertilization doses. The parameters evaluated were shoot dry matter, P content in the plant, and P content in the soil. A. sydowii caused the highest P content in the plant and soil at fertilization doses of 75% and 100%, contradicting the expected results from in vitro assays that indicated that A. brasiliensis would provide better rates of P uptake. There was no difference in the other fertilization doses or for dry matter when comparing all treatments. This result strongly suggests that the use of A. sydowii can improve the efficiency of P absorption with fertilization application. In addition, the molecular analysis of the two fungi performed in this study contributes novel information on the use of both species during the agricultural process.

Keywords

Maize Aspergillus brasiliensis Aspergillus sydowii Phosphate solubilization Phosphorous uptake Fertilization reduction 

Notes

Acknowledgments

The authors would like to acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process no. 2015/17505-3 and to the Conselho Nacional de Densenvolvimento Científico e Tecnológico (CNPq) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460:105–111CrossRefGoogle Scholar
  2. Alves S, Pereira R (1989) Produção de Metarhizium anisopliae (Metsch.) Sorok. e Beauveria bassiana (Bals.) Vuill. em bandejas. Ecossistema 14:188–192Google Scholar
  3. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in enzymology, vol 8. Elsevier, pp 115–118Google Scholar
  4. Barbosa J, Maldonado Junior W (2010) AgroEstat: sistema para analises estatísticas de ensaios agronômicos. Faculdade de Ciências Agrarias e Veterinárias, Unesp, JaboticabalGoogle Scholar
  5. Battini F, Gronlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci RepScientific Reports 7:4686CrossRefGoogle Scholar
  6. Chen M, Graedel T (2016) A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob Environ Chang 36:139–152CrossRefGoogle Scholar
  7. Conab (2017) Acompanhamento da safra brasileira: Grãos, safra 2016/2017, décimo segundo levantamento. Brasília 4 (12) 1–158.Google Scholar
  8. Cong B, Wang N, Liu S, Liu F, Yin X, Shen J (2017) Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol 17:129CrossRefGoogle Scholar
  9. de Almeida PZ et al (2017) Bioprospection and characterization of the amylolytic activity by filamentous fungi from Brazilian Atlantic Forest. Biota Neotropica 17Google Scholar
  10. de Carvalho Mendes I, dos Reis Junior FB (2003) Microrganismos e disponibilidade de fósforo (P) nos solos: uma analise critica Embrapa Cerrados-Documentos (INFOTECA-E)Google Scholar
  11. Fornasieri Filho D (2007) Manual da cultura do milho. FunepGoogle Scholar
  12. Gaind S, Singh YV (2016) Short-term impact of organic fertilization and seasonal variations on enzymes and microbial indices under rice-wheat rotation. CLEAN-Soil Air Water 44:1396–1404CrossRefGoogle Scholar
  13. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below- ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181CrossRefGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol 41. [London]: Information Retrieval Ltd., c1979-c2000, pp 95–98Google Scholar
  15. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29CrossRefGoogle Scholar
  16. Larkin MA et al. (2007) Clustal W and Clustal X version 2.0 bioinformatics 23:2947–2948Google Scholar
  17. Mahamuni S, Wani P, Patil A (2012) Isolation of phosphate solubilizing fungi from rhizosphere of sugarcane & sugar beet using TCP & RP solubilization. Asian J Biochem Pharm Res 2:237–244Google Scholar
  18. Malavolta E (1997) Avaliação do estado nutricional das plantas: princípios e aplicações/Euripedes Malavolta, Godofredo Cesar Vitti, Sebastiao Alberto de Oliveira. 2. ed., ver. ed atual Piracicaba: PotafosGoogle Scholar
  19. Marfenina O, Fomicheva G, Gorlenko M, Svirida N (2013) Ecophysiological differences between saprotrophic and clinical strains of the microscopic fungus aAspergillus sydowii (Bainier & Sartory) Thom & Church. Microbiology 82:85–90CrossRefGoogle Scholar
  20. Matkar K, Chapla D, Divecha J, Nighojkar A, Madamwar D (2013) Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int Biodeterior Biodegrad 78:24–33CrossRefGoogle Scholar
  21. Miyazaki T et al (2011) Heterologous expression and characterization of processing a-glucosidase I from Aspergillus brasiliensis ATCC 9642. Glycoconj J 28:563–571CrossRefGoogle Scholar
  22. Nahas E, de Assis LC (1992) Solubilização de fosfatos de rocha por Aspergillus niger em diferentes tipos de vinhaça. Pesq Agrop BrasileiraPesquisa Agropecuária Brasileira 27:325–331Google Scholar
  23. Nahas E, Fornasieri D, Assis L (1994) Resposta a inoculação de fungo solubilizador de fósforo em milho. Sci Agric:463–469CrossRefGoogle Scholar
  24. Oliveira Mendes G, de Freitas ALM, Pereira OL, da Silva IR, Vassilev NB, Costa MD (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239–249CrossRefGoogle Scholar
  25. Pacheco SMV, Damasio F (2014) Aplicação de microrganismos disponibilizadores de fosfato imobilizados em alginato de cálcio na agricultura Revista Eletrônica de Biologia (REB) ISSN 1983–682 6:184–204Google Scholar
  26. Patil UH, Gaikwad DK (2012) Effect of varying environmental conditions of mineral status of stem bark of Anogeissus latifolia. J Pharm Res 5:1140–1143Google Scholar
  27. Pedersen M, Lauritzen HK, Frisvad JC, Meyer AS (2007) Identification of thermostable P-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger. Biotechnol Lett 29:743–748CrossRefGoogle Scholar
  28. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77CrossRefGoogle Scholar
  29. Raij BV (1991) Fertilidade do solo e adubação. Associação Brasileira para Pesquisa da Potassa e do Fosfato, PiracicabaGoogle Scholar
  30. Raij BV, Cantarella H, Quaggio J, Furlani A (1997) Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico/Fundação IAC CampinasGoogle Scholar
  31. Ranum P, Pena- Rosas JP, Garcia- Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312:105–112CrossRefGoogle Scholar
  32. Rheinheimer dos Santos D, Colpo Gatiboni L, Kaminski J (2008) Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural 38Google Scholar
  33. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  34. Rypien KL, Andras JP (2008) Isolation and characterization of microsatellite loci in Aspergillus sydowii, a pathogen of Caribbean Sea fan corals. Mol Ecol Resour 8:230–232CrossRefGoogle Scholar
  35. Samson RA et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173CrossRefGoogle Scholar
  36. Sarruge JR, Haag HP (1974) Analises químicas em plantas. Esalq PiracicabaGoogle Scholar
  37. Schneider K et al (2010) Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J Appl Microbiol 108:366–374CrossRefGoogle Scholar
  38. Siqueira JPZ, Sutton DA, Garcia D, Gene J, Thomson P, Wiederhold N, Guarro J (2016) Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol 120:1458–1467CrossRefGoogle Scholar
  39. Souchie EL, Saggin-Junior OJ, Silva EM, Campello EF, Azcon R, Barea JM (2006) Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad Bras Cienc 78:183–193CrossRefGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  41. Tripti, Kumar A, Usmani Z, Kumar V, Anshumali (2017) Biochar and fly ash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manag 190:20–27.  https://doi.org/10.1016/j.jenvman.2016.11.060 CrossRefGoogle Scholar
  42. Varga J et al (2007) Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. Int J Syst Evol Microbiol 57:1925–1932CrossRefGoogle Scholar
  43. Volke-Sepulveda T, Salgado-Bautista D, Bergmann C, Wells L, Gutierrez-Sanchez G, Favela-Torres E (2016) Secretomic insight into glucose metabolism of Aspergillus brasiliensis in solid-state fermentation. J Proteome Res 15:3856–3871CrossRefGoogle Scholar
  44. Watanabe F, Olsen S (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil 1. Soil Sci Soc Am J 29:677–678CrossRefGoogle Scholar
  45. White T (1990) Analysis of phylogenetic relationships by amplification and direct seaquencing of ribosomal RNA genes PCR Protocols: a guide to methods and applicationsGoogle Scholar
  46. Yarden O (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  1. 1.Department of Plant Production, Agricultural and Livestock Microbiology Graduation ProgramSão Paulo State University (UNESP), School of Agricultural and Veterinarian SciencesJaboticabalBrazil

Personalised recommendations