Advertisement

Annals of Microbiology

, Volume 68, Issue 12, pp 851–861 | Cite as

Isolation and culturing of protease- and lipase-producing Halococcus agarilyticus GUGFAWS-3 from marine Haliclona sp. inhabiting the rocky intertidal region of Anjuna in Goa, India

  • Sanket Krishnanath Gaonkar
  • Irene Jeronimo FurtadoEmail author
Original Article
  • 79 Downloads

Abstract

Three extremely halophilic bionts GUGFAWS-1, GUGFAWS-2, and GUGFAWS-3 were isolated from a marine, white sponge, attached to rocks, in the intertidal region of Anjuna, Goa, India (15° 34′ 05″ N, 73° 44′ 17° 40′ E). Because the sponge had irregular tubes arranged in clusters, it was identified as Haliclona sp. All sponge bionts produced protease and lipase. GUGFAWS-1 and GUGFAWS-2 were euryhaline Eubacteria, growing from 0 to 30% NaCl concentration. The biont, GUGFAWS-3, was a haloarchaeon having glycerol diether moieties in its cells and showed R-O-R and long isoprenoid chains, in FTIR. The haloarchaeon, GUGFAWS-3, simultaneously produced extracellular 49.5 U mL−1 of protease and 3.67 U mL−1 of lipase, in the presence of 25% NaCl. It grew as dark orange-red colonies at 5–30% NaCl. Its growth was sensitive to bile salts and resistant to 700 U of penicillin. Cells were Gram-negative cocci, arranged in pairs, and 1-μm size in SEM micrograph. It possessed bacterioruberin with absorption at 387, 468, 492, and 523 nm. The 16S rRNA gene sequence of GUGFAWS-3 was 99.1% similar to Halococcus agarilyticus 62E (T) of the family Halococcaceae of the domain Archaea. This study is the first evidence of retrieval and culturing of Halococcus agarilyticus strain GUGFAWS-3 (MF425611) from marine Haliclona sp. with ability to simultaneously produce protease and lipase extremozymes of ecological and biotechnological significance.

Keywords

Marine Haliclona sp. Haloarchaea Protease Lipase Extremozymes 

Notes

Acknowledgements

S. K. Gaonkar gratefully acknowledges Goa University, research studentship award.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13213_2018_1391_MOESM1_ESM.docx (181 kb)
ESM 1 (DOCX 180 kb)

References

  1. Aguiar R, Furtado I (1996) Growth of Halobacterium strain R3on sodium benzoate. In: RS Kahlon (ed) Perspectives in microbiology. Natl. Agri Tech Inf Centre India, pp 78–79Google Scholar
  2. Akolkar A, Bharambe N, Trivedi S, Desai A (2009) Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1). Lett Appl Microbiol 48:77–83CrossRefGoogle Scholar
  3. Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinius under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750CrossRefGoogle Scholar
  4. Basu S, Prabhu Matondkar SG, Furtado I (2011) Enumeration of bacteria from a Trichodesmium spp. bloom of the Eastern Arabian Sea: elucidation of their possible role in biogeochemistry. J Appl Phycol 23:309–319CrossRefGoogle Scholar
  5. Beisson F, Tiss A, Riviere C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 102:133–153CrossRefGoogle Scholar
  6. Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML, Ollivier B, Baratti JC (2005) Lipolytic activity from halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248:133–140CrossRefGoogle Scholar
  7. Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 43:21–26CrossRefGoogle Scholar
  8. Braganza JM, Furtado I (2009) Isolation of Haloarchaea from low-salinity coastal sediments and waters of Goa. Curr Sci 96:1182–1184Google Scholar
  9. Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36:903–999CrossRefGoogle Scholar
  10. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefGoogle Scholar
  11. Dahihande AS, Thakur NL (2017) Differential growth forms of the sponge Biemna fortis govern the abundance of its associated brittle star Ophiactis modesta. J Sea Res 126:1–11CrossRefGoogle Scholar
  12. de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC (2008) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139–151CrossRefGoogle Scholar
  13. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedPubMedCentralGoogle Scholar
  14. Fukushima TT, Usami R, Kamekura M (2007) A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. Saline Syst 3:2CrossRefGoogle Scholar
  15. Gaitonde D, Sarkar A, Kaisary S, Silva CD, Dias C, Rao DP, Ray D, Nagarajan R, De Sousa SN, Sarker S, Patil D (2006) Acetylcholinesterase activities in marine snail (Cronia contracta) as a biomarker of neurotoxic contaminants along the Goa coast, West coast of India. Ecotoxicol 15:353–358CrossRefGoogle Scholar
  16. Gaonkar SK, Furtado I (2018) Use of immobilized whole cells of Haloferax ATCC BAA 645 for treatment of dairy and fish waste effluents. IJPBS 8:16–21Google Scholar
  17. Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56:1323–1329CrossRefGoogle Scholar
  18. Grant RE (1841) Porifera. Pp 5–9, 310–313, pls II-IV. In: H Bailliere (ed) Outlines of comparative anatomy. 1 London, pp 1–656Google Scholar
  19. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267CrossRefGoogle Scholar
  20. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Order I. Halobacteriales. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology V.I, The Archaea and deeply branching and phototrophic bacteria, 2nd edn. Springer, New YorkGoogle Scholar
  21. Gupta M, Agarwal S, Navani NK, Choudhury B (2015) Isolation and characterization of a protease-producing novel haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR from Sambhar lake in Rajasthan, India. Ann Microbiol 65:677–686CrossRefGoogle Scholar
  22. Hammer Q, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9ppGoogle Scholar
  23. Izotova LS, Strongin AY, Chekulaeva LN, Sterkin VE, Ostoslavskaya VI, Lyublinskaya LA, Timokhina EA, Stepanov VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155(2):826–830PubMedPubMedCentralGoogle Scholar
  24. Kamekura M, Seno Y (1993) Partial sequence of the gene for a serine protease from a halophilic archaeum Haloferax mediterranei R4 and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea. Experientia 49:503–513CrossRefGoogle Scholar
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 36S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  26. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated microorganisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B 280:20122328CrossRefGoogle Scholar
  27. Kunitz M (1947) Crystalline soyabean trypsin inhibitor I general properties. J Gen Physiol 30:291–310CrossRefGoogle Scholar
  28. Manikandan M, Pasic L, Kannan V (2009) Purification and biological characterization of a halophilic thermostable protease from Haloferax lucentensis VKMM007. World J Microbiol Biotechnol 25:2247–2256CrossRefGoogle Scholar
  29. Matsumoto T, Ito M, Fukuda H, Kondo A (2004) Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl Microbiol Biotechnol 64:481–485CrossRefGoogle Scholar
  30. Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y, Kamekura M, Maruyama T, Usami R (2013) Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles 17:931–939CrossRefGoogle Scholar
  31. Minegishi H, Echigo A, Shimane Y, Kamekura M, Itoh T et al (2015) Halococcus agarilyticus sp. nov., an agar-degrading haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 65:1634–1639CrossRefGoogle Scholar
  32. Montero CG, Ventosa A, Rodrı’guez-Valera F, Kates M, Moldoveanu N, Ruiz-Berraquero F (1989) Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst Appl Microbiol 12:167–171CrossRefGoogle Scholar
  33. Moreno ML, Garcia MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol Ecol 68:59–71CrossRefGoogle Scholar
  34. Norberg P, Hofsten BV (1969) Proteolytic enzymes from extremely halophilic bacteria. J Gen Microbiol 55:251–256CrossRefGoogle Scholar
  35. Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36:105–110CrossRefGoogle Scholar
  36. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595CrossRefGoogle Scholar
  37. Raghavan TM, Furtado I (2004) Occurrence of extremely haloarchaea in sediments from the continental shelf of west coast of India. Curr Sci 86:1065–1067Google Scholar
  38. Raghavan TM, Furtado I (2005) Expression of carotenoid pigments of haloarchaeal cultures exposed to aniline. Environ Toxicol 20:165–169CrossRefGoogle Scholar
  39. Ross HNM, Collins MD, Tindall BJ, Grant WD (1981) A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J Gen Microbiol 123:75–80Google Scholar
  40. Shi WL, Zhong CQ, Tang B, Shen P (2006) Purification and characterization of extracellular halophilic protease from haloarchaea Natrinema sp. R6-5. Acta Microbiol Sin 47(1):163–163Google Scholar
  41. Smibert RM, Krieg NR (1994) In: Gerhardt P (ed) Phenotypic characterization in: Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  42. Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, BaltimoreGoogle Scholar
  43. Velho-Pereira S, Furtado I (2014) Retrieval of euryhaline eubacterial and haloarchaeal bionts from nine different benthic sponges: reflection of the bacteriological health of waters of Mandapam, India. Indian J Mar Sci 43:773–783Google Scholar
  44. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedPubMedCentralGoogle Scholar
  45. Vidyasagar M, Prakash S, Litchfield C, Sreeramulu K (2006) Purification and characterization of a thermostable, haloalkaliphilic extracellular serine protease from extreme halophilic archaeon Halogeometricum borinquense strain TSS103. Archaea 2:51–57CrossRefGoogle Scholar
  46. Wang QF, Li W, Yang H, Liu YL, Cao HH, Dornmayr- Pfaffenhuemer M, Stan-Lotter H, Guo GQ (2007) Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57:600–604CrossRefGoogle Scholar
  47. Wang X, Brandt D, Thakur NL, Wiens M, Batel R, Schroder HC, Muller WEG (2013) Molecular cross-talk between sponge host and associated microbes. Phytochem Rev 12(3):369–390CrossRefGoogle Scholar
  48. Xin L, Hui-Ying Y (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 59:455–463CrossRefGoogle Scholar
  49. Yahel G, Sharp JH, Marie D, Haese C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149CrossRefGoogle Scholar
  50. Yim KJ, Cha I, Whon TW, Lee H, Song HS, Kim K, Nam Y, Lee S, Bae J, Rhee S, Choi J, Seo M, Roh SW, Kim D (2014) Halococcus sediminicola sp. nov., an extremely halophilic archaeon isolated from a marine sediment. Antonie Leeuwenhoek 105:73–79CrossRefGoogle Scholar
  51. Zhao GY, Chen XL, Zhao HL, Xie BB, Zhou BC, Zhang YZ (2008) Hydrolysis of insoluble collagen by deseasin MCP-03 from deep-sea Pseudoalteromonas sp. SM9913: collagenolytic characters, collagen binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. J Biol Chem 283:36100–36107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  • Sanket Krishnanath Gaonkar
    • 1
  • Irene Jeronimo Furtado
    • 1
    Email author
  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations