Skip to main content
Log in

Microbiological analysis and assessment of biotechnological potential of lactic acid bacteria isolated from Tunisian flours

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This work was carried out to identify lactic acid bacteria (LAB) from baking wheat flours and to evaluate their technological capabilities for potential incorporation in sourdough process. Six samples of wheat flours obtained from different geographical regions of Tunisia were microbiologically analyzed. Several technological features including acidification, antimicrobial, amylolytic, proteolytic, and antioxidant activities of six selected LAB strains were investigated for future in situ applications. Moreover, LAB were investigated for their ability to produce exopolysaccharides. A total of 45 autochthonous LAB were isolated and identified by genetic analysis of 16S–23S rRNA intergenic transcribed spacer (ITS)-generated patterns ITS-PCR. One of each ITS-PCR pattern was subjected to partial 16S rRNA gene sequencing, and strains were identified as Weissella cibaria, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus pentosaceus, Pediococcus pentoseus, Pediococcus acidilactici, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus faecalis. All tested LAB showed good acidifying ability by decreasing significantly (p < 0.05) the pH of flour extract below 4.0 after 24 h and below 3.0 after 72 h. Pediococcus pentoseus and P. acidilactici presented fermentation quotient (FQ, ratio of lactic and acetic acids) close to the optimal range. All LAB isolates demonstrated extracellular proteolytic activity. Weissella cibaria S25 had the highest radical-scavenging activity with 25.57%. Lactobacillus plantarum S28 demonstrated the highest amylolytic activity (1386 U/mL) followed by P. acidilactici S16 (1086 U/mL). Although, L. plantarum S28 showed the highest production of exopolysaccharides (0.97 g/L). Moreover, varying halo of inhibition was detected against Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Penicillium expansum. This study revealed that autochthonous flour LAB had interesting technological features and thus could be used in sourdough production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfonzo A, Ventimiglia G, Corona O, Di Gerlando R, Gaglio R, Francesca N, Moschetti G, Settanni L (2013) Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol 36(2):343–354

    Article  CAS  PubMed  Google Scholar 

  • Alvarado C, García Almendárez BE, Martin SE, Regalado C (2006) Food-associated lactic acid bacteria with antimicrobial potential from traditional Mexican foods. Rev Latinoam Microbiol 48(3–4):260–268

    CAS  PubMed  Google Scholar 

  • Amapu TY, Ameh JB, Ado SA, Abdullahi IO, Dapiya HS (2016) Amylolytic potential of lactic acid bacteria isolated from wet milled cereals, cassava flour and fruits. British Microbiology Research Journal 13(2):1–8. https://doi.org/10.9734/BMRJ/2016/24509

    Article  Google Scholar 

  • Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V (2013) Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control 30:35–40

    Article  CAS  Google Scholar 

  • Berghofer LK, Hocking AD, Miskelly D, Jansson E (2003) Microbiology of wheat and flour milling in Australia. Int J Food Microbiol 85(1):137–149. https://doi.org/10.1016/S0168-1605(02)00507-X

    Article  PubMed  Google Scholar 

  • Bortolaia V, Espinosa-Gongora C, Guardabassi L (2016) Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 22(2):130–140

    Article  CAS  PubMed  Google Scholar 

  • Cagno RD, Angelis MD, Lavermicocca P, Vincenzi MD, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68(2):623–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Cizeikiene D, Juodeikiene G, Paskevicius A, Bartkiene E (2013) Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31(2):539–545. https://doi.org/10.1016/j.foodcont.2012.12.004

    Article  CAS  Google Scholar 

  • Coda R, Rizzello CG, Pinto D, Gobbetti M (2012) Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl Environ Microbiol 78(4):1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čonková E, Laciaková A, ŠtyriakI CL, Wilczinska G (2006) Fungal contamination and the levels of mycotoxins (DON and OTA) in cereal samples from Poland and East Slovakia. Czech J Food Sci 24:33–40

    Article  Google Scholar 

  • Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J (2000) Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agric Food Chem 48(7):3044–3051. https://doi.org/10.1021/jf990853e

    Article  CAS  PubMed  Google Scholar 

  • Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40(5):539–558. https://doi.org/10.1016/j.foodres.2006.11.001

    Article  CAS  Google Scholar 

  • Corsetti A, Settanni L, Chaves López C, Felis GE, Mastrangelo M, Suzzi G (2007) A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst Appl Microbiol 30(7):561–571. https://doi.org/10.1016/j.syapm.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  • Crescenzi V (1995) Microbial polysaccharides of applied interest: ongoing research activities in Europe. Biotechnol Prog 11(3):251–259. https://doi.org/10.1021/bp00033a002

    Article  CAS  PubMed  Google Scholar 

  • Curiel JA, Pinto D, Marzani B, Filannino P, Farris GA, Gobbetti M, Rizzello CG (2015) Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb Cell Factories 7(14):67. https://doi.org/10.1186/s12934-015-0250-4

    Article  CAS  Google Scholar 

  • Daffonchio D, Borin S, Frova G, Manachini PL, Sorlini C (1998) PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis. Int J Syst Bacteriol 48:107–116. https://doi.org/10.1099/00207713-48-1-107

    Article  CAS  PubMed  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM et al (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318. https://doi.org/10.3390/foods6120110

    Article  CAS  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21:370–380. https://doi.org/10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies — a review. J Chem Technol Biotech 81(7):1119–1129. https://doi.org/10.1002/jctb.1486

    Article  CAS  Google Scholar 

  • De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26(7):666–675

    Article  PubMed  Google Scholar 

  • Digaitiene A, Ås H, Juodeikiene G, Eidukonyte D, Josephsen J (2012) Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. J Appl Microbiol 112(4):732–742. https://doi.org/10.1111/j.1365-2672.2012.05249.x

    Article  CAS  PubMed  Google Scholar 

  • Djossou O, Perraud-Gaime I, Mirleau FL, Rodriguez-Serrano G, Karou G, Niamke S, Ouzari I, Boudabous A, Roussos S (2011) Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius. Anaerobe 17(6):267–272

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Eglezos S (2010) Microbiological quality of wheat grain and flour from two mills in Queensland, Australia. J Food Prot 73(8):1533–1536. https://doi.org/10.4315/0362-028X-73.8.1533

    Article  PubMed  Google Scholar 

  • Ehrmann MA, Vogel RF (2005) Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci Technol 16(1):31–42. https://doi.org/10.1128/AEM.02955-13

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organisation) (1995b) Norme codex pour la semoule et la farine de blé dur, CODEX STAN 178–1991, −Rév. 1–1995 : p. 4

  • FAO (Food and Agriculture Organisation) (2002) World agriculture: towards 2015/2030. Summary Report. FAO, Rome

  • FAO (Food and Agriculture Organisation) (2014) Statistical book. www.fao.org/economic

  • Fleurat-Lessard F (2017) Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins – an update. J Stored Prod Res 71:22–40

    Article  Google Scholar 

  • Fossi BT, Tavea F (2013) Application of amylolytic Lactobacillus fermentum 04BBA19 in fermentation for simultaneous production of thermostable alpha-amylase and lactic acid. R and D for food, health and livestock Purposes, chapter 27. https://doi.org/10.5772/50456

  • Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 26:163–117

    Article  CAS  PubMed  Google Scholar 

  • Giraffa G (2014) Overview of the ecology and biodiversity of the LAB. In: Holzapfel WH and Wood BJB Lactic acid bacteria – biodiversity and taxonomy. Chichester, West Sussex, UK: John Wiley and Sons, Ltd. pp. 45–54

  • Giraud E, Champailler A, Raimbault M (1994) Degradation of raw starch by a wild amylolytic strain of Lactobacillus plantarum. J Appl Environ Microbiol 60(12):4319–4323

    CAS  Google Scholar 

  • Gobbetti M, Lavermicocca P, Minervini F, De Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and alphaalpha-L-arabinofuranosidase: a tool to increase the production of acetic acid. J Appl Microbiol 88(2):317–324

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40. https://doi.org/10.1016/j.fm.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  • Guerra NP, Agrasar AT, Macías CL, Bernárdez PF, Castro LP (2007) Dynamic mathematical models to describe the growth and nisin production by Lactococcus lactis subsp. lactis CECT 539 in both batch and re-alkalized fed-batch cultures. J Food Eng 82(2):103–113. https://doi.org/10.1155/2010/290286

    Article  CAS  Google Scholar 

  • Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology (Reading, England) 142:3–16. https://doi.org/10.1099/13500872-142-1-3

    Article  Google Scholar 

  • Guyot JP (2010) Fermented cereal products. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, Taylor and Francis Group, New York, pp 247–261

    Chapter  Google Scholar 

  • Hammes WP and Gänzle MG (1998) Sourdough breads and related products. In: Wood BJB (ed) Microbiology of fermented foods Blackie Academic and Professional (London), pp 199–216

  • Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78(1):119–131

    Article  PubMed  Google Scholar 

  • Hattingh M, Alexander A, Meijering I, Van Reenan CA, Dicks LMT (2015) Amylolytic strains of Lactobacillus plantarum isolated from barley. Afr J Biotechnol 14(4):310–318. https://doi.org/10.5897/AJB2014.14149

    Article  CAS  Google Scholar 

  • Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9(11):e111786

    Article  PubMed  PubMed Central  Google Scholar 

  • Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106(3):270–285. https://doi.org/10.1016/j.ijfoodmicro.2005.06.027

    Article  PubMed  Google Scholar 

  • Lin MY, Chang FJ (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45(8):1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Mamhoud A, Nionelli L, Bouzaine T, Hamdi M, Gobbetti M, Rizzello CG (2016) Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation. Int J Food Microbiol 225(Supplement C):9–19

    Article  CAS  PubMed  Google Scholar 

  • Mhir S, Mejri M, Hamdi M (2007) Microflora distribution and species ratio of Tunisian fermented doughs for bakery industry. Afr J Biotechnol 6(18):2122. https://doi.org/10.5897/AJB2007.000-2330

    Article  Google Scholar 

  • Minervini F, Celano G, Lattanzi A, Tedone L, De Mastro G, Gobbetti M, De Angelis M (2015) Lactic acid bacteria in durum wheat flour are endophytic components of the plant during its entire life cycle. Appl Environ Microbiol 81(19):6736–6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles MC, Flores J, Perez-Martinez G (1996) Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiol 13(3):227–236. https://doi.org/10.1006/fmic.1996.0028

    Article  CAS  Google Scholar 

  • Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67(1):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piard JC, Desmazeaud M (1991) Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait 71(5):525–541. https://doi.org/10.1051/lait:1991541

    Article  CAS  Google Scholar 

  • Petrova P, Emanuilova M, Petrov K (2010) Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza. Zeitschrift für Naturforschung C 65(3–4):218–224. https://doi.org/10.1515/znc-2010-3-409

    Article  CAS  Google Scholar 

  • Ray RC, and Montet D (2016) Amylolytic lactic acid Bacteria: microbiology and technological interventions in food fermentations. In: Fermented foods. CRC Press. Part I, pp 142–159

  • Reddy G, Md A, Naveena BJ, Venkateshwar M, Vijay KE (2008) Amylolytic bacterial lactic acid fermentation: a review. Biotechnol Adv 26:22–34. https://doi.org/10.1016/j.biotechadv.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  • Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Factories 10(Suppl 1):S5. https://doi.org/10.1186/1475-2859-10-S1-S5

    Article  Google Scholar 

  • Rizzello CG, Coda R, Macías DS, Pinto D, Marzani B, Filannino P, Giuliani G, Paradiso VM, Di Cagno R, Gobbetti M (2013) Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp. Microb Cell Factories 4:12–44

    Google Scholar 

  • Rizzello CG, Curiel JA, Nionelli L, Vincentini O, Di Cagno R, Silano M, Gobbetti M, Coda R (2014) Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol 37:59–68. https://doi.org/10.1016/j.fm.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  • Robert H, Gabriel V, Fontagné-Faucher C (2009) Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Int J Food Microbiol 135(1):53–59. https://doi.org/10.1016/j.ijfoodmicro.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Abraham A, Mozzi F, de los Reyes-Gavilán CG (2008) Functionality of exopolysaccharides produced by lactic acid bacteria. In: Mayo B, Ĺopez P, Pérez-Martínez G (eds) Molecular aspects of lactic acid bacteria for traditional and new applications. Research Signpost, Kerala, India, pp 137–166

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sanni AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Swain MR, Anandharaj M, Ray R, Parveen Rani R (2014) Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int 2014:19. https://doi.org/10.1155/2014/250424

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trias R, Bañeras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11(4):231–236

    CAS  PubMed  Google Scholar 

  • USDA (United States Department of Agriculture) (2016) Tunisia: Grain and Feed Annual. USDA Foreign Agricultural Service. GAIN Report Number: TS1604. https://www.fas.usda.gov/data/tunisia-grain-and-feed-annual 

  • Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12(1):221–237. https://doi.org/10.1111/j.1574-6976.1993.tb00020.x

    Article  CAS  Google Scholar 

  • Ventimiglia G, Alfonzo A, Galluzzo P, Corona O, Francesca N, Caracappa S, Moschetti G, Settanni L (2015) Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol 51(Supplement C):57–68. https://doi.org/10.1016/j.fm.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1987) Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol 107(1):127–142

    Article  Google Scholar 

  • Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol, Chapter 2: Unit 2.4. https://doi.org/10.1002/0471142727.mb0204s56

  • Yang EJ, Chang HC (2010) Purification antifungal compound of a new produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A (2010) Production of organic acids by Lactobacillus strains in three different media. Eur Food Res Technol 230(3):395–404

    Article  Google Scholar 

Download references

Acknowledgments

Aurelie sauvager (CORINT, UMR CNRS ISCR 6226, UFR Sciences Pharmaceutiques et Biologiques, Université Rennes 1, France) is acknowledged for her technical help.

Funding

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR10CBBC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadda-Imene Ouzari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachi, I., Fhoula, I., Smida, I. et al. Microbiological analysis and assessment of biotechnological potential of lactic acid bacteria isolated from Tunisian flours. Ann Microbiol 69, 29–40 (2019). https://doi.org/10.1007/s13213-018-1365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1365-8

Keywords

Navigation