Annals of Microbiology

, Volume 68, Issue 4, pp 175–184 | Cite as

Pathogenicity and genomic characterization of Vibrio parahaemolyticus strain PB1937 causing shrimp acute hepatopancreatic necrosis disease in China

  • Songzhe Fu
  • Liping Wang
  • Huiqin Tian
  • Dawei Wei
  • Ying Liu
Original Article
  • 58 Downloads

Abstract

Acute hepatopancreatic necrosis disease (AHPND) outbreaks in cultured shrimps were identified in Zhangpu, China. One Vibrio parahaemolyticus strain PB1937 was isolated from the cultured shrimps and was confirmed as a causative agent of the AHPND outbreak by employing Koch’s four postulates. Challenge tests with 106 cells ml−1 of strain PB1937 caused 100% mortality of shrimps, indicating it had sufficient virulence to cause the outbreak. Phylogenomic analysis revealed a clear divergence between PB1937 and 14 publicly available V. parahaemolyticus strains and divided 11 AHPND-causing strains into six genomic clusters. Prophage profiling of above strains revealed strong correlations with their genomic relationship, while Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were almost absent in the genomes. The binary toxin gene pirABvp directly related to the development of AHPND was found in a 70-kb plasmid p1937-1 in PB1937 but was absent in a 78-kb novel plasmid p1937-2, which shared 46% sequence similarity with p1937-1. Comparative genomic analysis revealed that PB1937 has a novel truncated type VI secretion system (T6SS1) which possibly affects its antibacterial activity. In addition, three novel genomic islands were reported. The analysis of the genomes gave some clues regarding the correlation of virulence with its genomic trait for the AHPND strains.

Keywords

Vibrio parahaemolyticus AHPND PacBio pirABvp Prophage Type VI secretion system 

Notes

Acknowledgments

This research is funded by the National Key R&D Program of China (2017YFD0701700) and the National Natural Science Foundation of China (31672673, 31472312)

Supplementary material

13213_2018_1328_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1242 kb)

References

  1. Alday-Sanz V, Roque A, Turnbull JF (2002) Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis Aquat Org 48:91–99CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Bio 215:403–410CrossRefGoogle Scholar
  3. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bobay LM, Touchon M, Rocha EPC (2014) Pervasive domestication of defective prophages by bacteria. PNAS 111:12127–12132CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cabello FS (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144CrossRefPubMedGoogle Scholar
  6. Chan CH, Octavia S, Sintchenko V, Lan R (2016) SnpFilt: a pipeline for reference-free assembly-based identification of SNPs in bacterial genomes. Comput Bio Chem 65:178–184CrossRefGoogle Scholar
  7. Chen L, Xiong Z, Sun L, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645CrossRefPubMedGoogle Scholar
  8. Chowdhury NR, Stine OC, Morris JG, Nair GB (2004) Assessment of evolution of pandemic Vibrio parahaemolyticus by multilocus sequence typing. J Clin Microbiol 42:1280–1282CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duprey A, Reverchon S, Nasser W (2014) Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends in Microbiol 22:92–99CrossRefGoogle Scholar
  10. Fu S, Hiley L, Octavia S, Sintchenko V, Tanaka M, Lan R (2017) Comparative genomics of Australian and international isolates of Salmonella Typhimurium: correlation of core genome evolution with CRISPR and prophage profiles. Sci Rep 7:9733.  https://doi.org/10.1038/s41598-017-06079-1 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140CrossRefPubMedGoogle Scholar
  12. Gomez-Gil B, Soto-Rodríguez S, Lozano R, Betancourt-Lozano M (2014) Draft genome sequence of Vibrio parahaemolyticus strain M0605, which causes severe mortalities of shrimps in Mexico. Genome Announcement 2:e00055–e00014CrossRefGoogle Scholar
  13. Gomez-Jimenez S, Noriega-Orozco L, Sotelo-Mundo RR, Cantu-Robles VA, Cobian-Guemes AG, Cota-Verdugo RG, Gamez-Alejo LA, Del Pozo-Yauner L, Guevara-Hernandez E, Garcia-Orozco KD, Lopez-Zaval AA, Ochoa-Leyva A (2014) High-quality draft genomes of two Vibrio parahaemolyticus strains aid in understanding acute hepatopancreatic necrosis disease of cultured shrimps in Mexico. Genome Announc 2:e00800-14.  https://doi.org/10.1128/genomeA.00800-14 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hazen TH, Pan L, Gu JD, Sobecky PA (2010) The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 74:485–499CrossRefPubMedGoogle Scholar
  16. Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420CrossRefPubMedGoogle Scholar
  17. Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA (2013) Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9:e1003844CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kondo H, Tinwongger S, Proespraiwong P, Mavichak R, Unajak S, No-zaki R, Hirono I (2014) Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome Announcement 2:e00221–e00214CrossRefGoogle Scholar
  20. Kongrueng J, Yingkajorn M, Bunpa S, Sermwittayawong N, Singkhamanan K, Vuddhakul V (2015) Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in southern Thailand. J Fish Dis 38:957–966CrossRefPubMedGoogle Scholar
  21. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108CrossRefPubMedPubMedCentralGoogle Scholar
  23. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O (2012) Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J Clin Microbiol 50(4):1355–1361CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  25. Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY, Huang MF, Lin SJ, Chen CY, Lin SS, Lightner DV, Wang HC, Wang AH, Wang HC, Hor LI, Lo CF (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. PNAS 112:10798–10803CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li W, Jaroszewski L, Godzik A (2002) Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18:77–82CrossRefPubMedGoogle Scholar
  27. Li L, Wong HC, Nong W, Cheung MK, Law PT, Kam KM, Kwan HS (2014) Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics 15:1135CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K (2017) Acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus strains maintain an antibacterial type VI secretion system with versatile effector repertoires. Appl Environ Microbiol 83:e00737–e00717PubMedPubMedCentralGoogle Scholar
  29. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nunan L, Lightner DV, Pantoja C, Gomez-Jimenez S (2014) Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Dis Aqua Organ 111:81–86.  https://doi.org/10.3354/dao02776 CrossRefGoogle Scholar
  32. Palmer KL, Gilmore MS (2010) Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227–e00210CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. PNAS 103:1528–1533CrossRefPubMedPubMedCentralGoogle Scholar
  34. Soto-Rodriguez SA, Gomez-Gil B, Lozano R, del Rio-Rodriguez R, Diéguez AL, Romalde JL (2015) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol 81:1689–1699CrossRefPubMedPubMedCentralGoogle Scholar
  35. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  36. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC bioinformatics 4:41CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, Lightner DV (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aqua Organ 105:45–55CrossRefGoogle Scholar
  38. Yang YT, Chen IT, Lee CT, Chen CY, Lin SS, Hor LI, Tseng TC, Huang YT, Sritunyalucksana K, Thitamadee S, Wang HC, Lo CF (2014) Draft genome sequences of four strains of Vibrio parahaemolyticus, three of which cause early mortality syndrome/acute hepatopancreatic necrosis disease in shrimp in China and Thailand. Genome Announc 2:e00816–e00814.  https://doi.org/10.1128/genomeA.00816-14 PubMedPubMedCentralGoogle Scholar
  39. Yingkajorn M, Mitraparp-Arthorn P, Nuanualsuwan S, Poomwised R, Kongchuay N, Khamhaeng N, Vuddhakul V (2014) Prevalence and quantification of pathogenic Vibrio parahaemolyticus during shrimp culture in Thailand. Dis Aqua Organ 112:103–111CrossRefGoogle Scholar
  40. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zorrilla I, Chabrillón M, Arijo S, Díaz-Rosales P, Martínez-Manzanares E, Balebona MC, Moriňigo MA (2003) Bacteria recovered from diseased cultured gilthead sea bream (Sparus aurata L.) in southwestern Spain. Aquaculture 218:11–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2018

Authors and Affiliations

  1. 1.College of Marine Technology and EnvironmentDalian Ocean UniversityDalianChina
  2. 2.Key Laboratory of Marine Genetic Resources, Third Institute of OceanographyState Oceanography Administration of ChinaXiamenChina
  3. 3.Institute of OceanologyThe Chinese Academy of SciencesQingdaoChina
  4. 4.College of Life ScienceNorthwest Agriculture and Forestry UniversityYanglingChina

Personalised recommendations