Advertisement

Annals of Microbiology

, Volume 68, Issue 2, pp 63–77 | Cite as

Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites

  • Katherine M. HornickEmail author
  • Alejandro H. Buschmann
Original Article

Abstract

Aquaculture is an extremely valuable and rapidly expanding sector worldwide, but concerns exist related to environmental sustainability. The sediment below aquaculture farms receives inputs of antimicrobials, metal-containing products, and organic matter from uneaten food and fecal material. These inputs impact the surrounding marine microbial communities in complex ways; however, functional diversity shifts related to taxonomic composition remain poorly understood. Here, we investigated the effect of pollution from marine fish farms on sediment bacterial communities. We compared the bacterial communities and functional bacterial diversity in surface sediments at salmon aquaculture and reference sites in Chiloé, southern Chile, using Roche 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene and the predictive metagenomics approach (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, PICRUSt). Bacterial diversity, measured as the inverse Simpson index, was significantly lower at aquaculture than at reference sites, while species richness, based on Chao’s estimator, was not significantly different. Nevertheless, community composition differed significantly between reference and aquaculture sites. We found that Gammaproteobacteria and several taxa involved in remediating metal contamination and known to have antimicrobial resistances were enriched at aquaculture sites. However, PICRUSt predicted functions indicated a degree of functional redundancy between sites, whereas taxonomic-functional relationships indicated differences in the functional traits of specific taxa at aquaculture sites. This study provides a first step in understanding the bacterial community structure and functional changes due to Chilean salmon aquaculture and has direct implications for using bacterial shifts as indicators of aquaculture perturbations.

Keywords

Salmon aquaculture Bacterial communities Chile Pyrosequencing Organic loading Functional diversity 

Notes

Acknowledgements

Katherine Hornick would like the acknowledge Cristian Valenzuela and Dr. Daniel Varela for their assistance on specific protocols and methodological suggestions, as well as Dr. Edwin Niklitschek for his help and direction with the statistical analyses during her stay in Chile. She would also like to thank Dr. Carlos Aranda for his help with the bioinformatics analysis. AHB acknowledges the support of the Lenfest Ocean Program/Pew Charitable Trusts, FONDECYT nr. 1110845, and CONICYT Basal Program (FB-001). The help in the field by Adrián Villarroel and Juan Maulén is also specially acknowledged.

Supplementary material

13213_2017_1317_MOESM1_ESM.docx (721 kb)
ESM 1 (DOCX 720 kb)

References

  1. Abd-Elnaby HM, Abou-Elela GM, Ghozlan HA, Hussein H, Sabry SA (2016) Characterization and bioremediation potential of marine Psychrobacter species. Egypt J Aquat Res 42:193–203.  https://doi.org/10.1016/j.ejar.2016.04.003 CrossRefGoogle Scholar
  2. Aranda C, Paredes J, Valenzuela C, Lam P, Guillou L (2010) 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island). Gayana 74:125–135Google Scholar
  3. Aranda CP, Valenzuela C, Matamala Y, Godoy FA, Aranda N (2015) Sulphur-cycling bacteria and ciliated protozoans in a Beggiatoaceae mat covering organically enriched sediments beneath a salmon farm in a southern Chilean fjord. Mar Pollut Bull 100:270–278.  https://doi.org/10.1016/j.marpolbul.2015.08.040 PubMedCrossRefGoogle Scholar
  4. Armstrong SM, Hargrave BT, Haya K (2005) Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture, vol 5M. Springer, Berlin, pp 341–357.  https://doi.org/10.1007/b136017
  5. Asami H, Aida M, Watanabe K (2005) Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl Environ Microbiol 71:2925–2933.  https://doi.org/10.1128/AEM.71.6.2925-2933.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symp Ser 835:262–297CrossRefGoogle Scholar
  7. Bissett A, Bowman J, Burke C (2006) Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol Ecol 55:48–56.  https://doi.org/10.1111/j.1574-6941.2005.00012.x PubMedCrossRefGoogle Scholar
  8. Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9:46–60.  https://doi.org/10.1111/j.1462-2920.2006.01110.x PubMedCrossRefGoogle Scholar
  9. Bissett A, Cook PLM, Macleod C, Bowman JP, Burke C (2009) Effects of organic perturbation on marine sediment betaproteobacterial ammonia oxidizers and on benthic nitrogen biogeochemistry. Mar Ecol Prog Ser 392:17–32.  https://doi.org/10.3354/meps08244 CrossRefGoogle Scholar
  10. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K et al (2010) Aquaculture: global status and trends. Philos Trans R Soc B 365:2897–2912.  https://doi.org/10.1098/rstb.2010.0170 CrossRefGoogle Scholar
  11. Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483.  https://doi.org/10.1128/AEM.69.5.2463-2483.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brown SD, Palumbo AV, Panikov N, Ariyawansa T, Klingeman DM, Johnson CM et al (2012) Draft genome sequence for Microbacterium laevaniformans strain OR221, a bacterium tolerant to metals, nitrate, and low pH. J Bacteriol 194:3279–3280.  https://doi.org/10.1128/JB.00474-12 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23CrossRefGoogle Scholar
  14. Buschmann AH (2002) Impacto ambiental de la salmonicultura en Chile: la situación de la Xa Región de Los Lagos. Análisis Políticas Públicas 16:1–11Google Scholar
  15. Buschmann AH, Fortt A (2005) Efectos ambientales de la acuicultura intensiva y alternativas para un desarrollo sustentable. Rev Ambiente Desarrollo 21:58–64Google Scholar
  16. Buschmann AH, Mora OA, Gómez P, Böttger M, Buitano S, Retamales C et al (1994) Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult Eng 13:283–300.  https://doi.org/10.1016/0144-8609(94)90016-7 CrossRefGoogle Scholar
  17. Buschmann AH, Riquelme VA, Hernández-González MC, Varela D, Jiménez JE, Henríquez LA et al (2006) A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES J Mar Sci 63:338–1345.  https://doi.org/10.1016/j.icesjms.2006.04.021 CrossRefGoogle Scholar
  18. Buschmann AH, Hernández-González MC, Aranda C, Chopin T, Neori A, Halling C et al (2008) Mariculture waste management. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 3. Ecological engineering. Elsevier, Oxford, pp 2211–2217CrossRefGoogle Scholar
  19. Buschmann AH, Cabello F, Young K, Carvajal J, Varela DA, Henríquez L (2009) Salmon aquaculture and coastal ecosystem health in Chile: analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast Manage 52:243–249.  https://doi.org/10.1016/j.ocecoaman.2009.03.002 CrossRefGoogle Scholar
  20. Buschmann AH, Tomova A, López A, Maldonado MA, Henríquez LA, Ivanova L et al (2012) Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One 7:e42724PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144PubMedCrossRefGoogle Scholar
  22. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A et al (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942.  https://doi.org/10.1111/1462-2920.12134 PubMedCrossRefGoogle Scholar
  23. Carroll ML, Cochrane S, Fieler R, Velvin R, White P (2003) Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226:165–180.  https://doi.org/10.1016/S0044-8486(03)00475-7 CrossRefGoogle Scholar
  24. Castine SA, Bourne DG, Trott LA, McKinnon DA (2009) Sediment microbial community analysis: establishing impacts of aquaculture on a tropical mangrove ecosystem. Aquaculture 297:91–98.  https://doi.org/10.1016/j.aquaculture.2009.09.013 CrossRefGoogle Scholar
  25. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270.  https://doi.org/10.2307/4615964 Google Scholar
  26. Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwærter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21:73−84.  https://doi.org/10.3354/ame021073 CrossRefGoogle Scholar
  27. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143.  https://doi.org/10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  28. Dang H, Zhang X, Song L, Chang Y, Yang G (2007) Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. J Appl Microbiol 103:2580–2592.  https://doi.org/10.1111/j.1365-2672.2007.03494.x PubMedCrossRefGoogle Scholar
  29. Danovaro R, Tselepides A, Otegui A, Della Croce N (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400.  https://doi.org/10.1016/S0079-6611(00)00026-4 CrossRefGoogle Scholar
  30. Deming JW, Baross JA (1993) The early diagenesis of organic matter: bacterial activity. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 119–144CrossRefGoogle Scholar
  31. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dowle E, Pochon X, Keeley N, Wood SA (2015) Assessing the effects of salmon farming seabed enrichment using bacterial community diversity and high-throughput sequencing. FEMS Microbiol Ecol 91:fiv089.  https://doi.org/10.1093/femsec/fiv089 PubMedCrossRefGoogle Scholar
  33. Du J, Xiao K, Li L, Ding X, Liu H, Lu Y et al (2013) Temporal and spatial diversity of bacterial communities in coastal waters of the South China Sea. PLoS One 8:e66968.  https://doi.org/10.1371/journal.pone.0066968 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fernandes TF, Eleftheriou A, Ackefors H, Eleftheriou M, Ervik A, Sanchez-Mata A et al (2001) The scientific principles underlying the monitoring of the environmental impacts of aquaculture. J Appl Ichthyol 17:181–193.  https://doi.org/10.1046/j.1439-0426.2001.00315.x CrossRefGoogle Scholar
  36. Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB et al (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067.  https://doi.org/10.1128/AEM.66.9.4058-4067.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395.  https://doi.org/10.1073/pnas.1215210110 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fodelianakis S, Papageorgiou N, Pitta P, Kasapidis P, Karakassis I, Ladoukakis ED (2014) The pattern of change in the abundances of specific bacterioplankton groups is consistent across different nutrient-enriched habitats in Crete. Appl Environ Microbiol 80:3784–3792.  https://doi.org/10.1128/AEM.00088-14 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fodelianakis S, Papageorgiou N, Karakassis I, Ladoukakis ED (2015) Community structure changes in sediment bacterial communities along an organic enrichment gradient associated with fish farming. Ann Microbiol 65:331–338.  https://doi.org/10.1007/s13213-014-0865-4 CrossRefGoogle Scholar
  40. Food and Agriculture Organization of the United Nations (FAO) (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome, 200 pp. Available online at: http://www.fao.org/3/a-i5555e.pdf
  41. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV et al (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci U S A 103:13104–13109.  https://doi.org/10.1073/pnas.0602399103 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Garren M, Smriga S, Azam F (2008) Gradients of coastal fish farm effluents and their effect on coral reef microbes. Environ Microbiol 10:2299–2312.  https://doi.org/10.1111/j.1462-2920.2008.01654.x PubMedCrossRefGoogle Scholar
  43. Gooday AJ (2002) Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J Oceanogr 58:305–322.  https://doi.org/10.1023/A:1015865826379 CrossRefGoogle Scholar
  44. Hall-Spencer J, White N, Gillespie E, Gillham K, Foggo A (2006) Impact of fish farms on maerl beds in strongly tidal areas. Mar Ecol Prog Ser 326:1–9.  https://doi.org/10.3354/meps326001 CrossRefGoogle Scholar
  45. Hansen LS, Blackburn TH (1992) Effect of algal bloom deposition on sediment respiration and fluxes. Mar Biol 112:147–152.  https://doi.org/10.1007/BF00349738 CrossRefGoogle Scholar
  46. Hargrave BT, Duplisea DE, Pfeiffer E, Wildish DJ (1993) Seasonal changes in benthic fluxes of dissolved oxygen and ammonium associated with marine cultured Atlantic salmon. Mar Ecol Prog Ser 96:249–257.  https://doi.org/10.3354/meps096249 CrossRefGoogle Scholar
  47. Hargrave BT, Phillips GA, Doucette LI, White MJ, Milligan TG, Wildish DJ et al (1997) Assessing benthic impacts of organic enrichment from marine aquaculture. Water Air Soil Pollut 99:641–650.  https://doi.org/10.1007/BF02406903 Google Scholar
  48. Holmer M, Duarte CM, Heilskov A, Olesen B, Terrados J (2003) Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. Mar Pollut Bull 46:1470–1479.  https://doi.org/10.1016/S0025-326X(03)00281-9 PubMedCrossRefGoogle Scholar
  49. Holmer M, Argyrou M, Dalsgaard T, Danovaro R, Diaz-Almela E, Duarte CM et al (2008) Effects of fish farm waste on Posidonia oceanica meadows: synthesis and provision of monitoring and management tools. Mar Pollut Bull 56:1618–1629.  https://doi.org/10.1016/j.marpolbul.2008.05.020 PubMedCrossRefGoogle Scholar
  50. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K et al (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235.  https://doi.org/10.1128/AEM.69.12.7224-7235.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Iyer R, Damania A, Iken B (2017) Whole genome sequencing of microbacterium sp. AISO3 from polluted San Jacinto River sediment reveals high bacterial mobility, metabolic versatility and heavy metal resistance. Genom Data 14:10–13.  https://doi.org/10.1016/j.gdata.2017.07.009 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kamjunke N, Nimptsch J, Harir M, Herzsprung P, Schmitt-Kopplin P, Neu TR et al (2017) Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter. Sci Rep 7:43739.  https://doi.org/10.1038/srep43739 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30.  https://doi.org/10.1093/nar/28.1.27 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Karakassis I, Tsapakis M, Hatziyanni E (1998) Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Mar Ecol Prog Ser 162:243–252.  https://doi.org/10.3354/meps162243 CrossRefGoogle Scholar
  55. Kawahara N, Shigematsu K, Miura S, Miyadai T, Kondo R (2008) Distribution of sulfate-reducing bacteria in fish farm sediments on the coast of southern Fukui Prefecture, Japan. Plankton Benthos Res 3:42–45.  https://doi.org/10.3800/pbr.3.42 CrossRefGoogle Scholar
  56. Kawahara N, Shigematsu K, Miyadai T, Kondo R (2009) Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient. Aquaculture 287:107–113.  https://doi.org/10.1016/j.aquaculture.2008.10.003 CrossRefGoogle Scholar
  57. Kim SR, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237:147–156.  https://doi.org/10.1111/j.1574-6968.2004.tb09690.x PubMedCrossRefGoogle Scholar
  58. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M et al (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50.  https://doi.org/10.3389/fmicb.2013.00050 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kondo R, Shigematsu K, Butani J (2008) Rapid enumeration of sulphate-reducing bacteria from aquatic environments using real-time PCR. Plankton Benthos Res 3(3):180–183.  https://doi.org/10.3800/pbr.3.180 CrossRefGoogle Scholar
  60. Kondo R, Shigematsu K, Kawahara N, Okamura T, Yoon YH, Sakami T et al (2012) Abundance of sulphate-reducing bacteria in fish farm sediments along the coast of Japan and South Korea. Fish Sci 78:123–131.  https://doi.org/10.1007/s12562-011-0439-3 CrossRefGoogle Scholar
  61. Köster M, Meyer-Reil LA (2001) Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 214:25–41.  https://doi.org/10.3354/meps214025 CrossRefGoogle Scholar
  62. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400.  https://doi.org/10.1007/PL00011793 PubMedCrossRefGoogle Scholar
  64. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172.  https://doi.org/10.1038/ismej.2010.133 PubMedCrossRefGoogle Scholar
  65. Maage A, Julshamn K, Berge GE (2001) Zinc gluconate and zinc sulphate as dietary zinc sources for Atlantic salmon. Aquacult Nutr 7:183–187.  https://doi.org/10.1046/j.1365-2095.2001.00170.x CrossRefGoogle Scholar
  66. Macleod C, Forbes S (2004) Guide to the assessment of sediment condition at marine finfish farms in Tasmania. Aquafin CRC Project 4.1. Tasmanian Aquaculture and Fisheries Institute, AustraliaGoogle Scholar
  67. Macleod CK, Moltschaniwskyj NA, Crawford CM (2008) Ecological and functional changes associated with long-term recovery from organic enrichment. Mar Ecol Prog Ser 365:17–24.  https://doi.org/10.3354/meps07534 CrossRefGoogle Scholar
  68. Macleod C, Eriksen R, Simpson S, Davey A, Ross J (2014) Assessment of the environmental impacts and sediment remediation potential associated with copper contamination from antifouling paint (and associated recommendations for management). FRDC Project No. 2011-041 (University of Tasmania, CSIRO), AustraliaGoogle Scholar
  69. Marcial Gomes NC, Borges LR, Paranhos R, Pinto FN, Mendonça-Hagler LCS, Smalla K (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 66:96–109.  https://doi.org/10.1111/j.1574-6941.2008.00519.x PubMedCrossRefGoogle Scholar
  70. McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA et al (1999) Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environ Microbiol 65:213–220PubMedPubMedCentralGoogle Scholar
  71. McCarthy Ú, Stagg H, Donald K, Garden A, Weir SJ (2013) Psychrobacter sp. isolated from the kidney of salmonids at a number of aquaculture sites in Scotland. Bull Eur Assoc Fish Pathol 33:67–72Google Scholar
  72. Miranda CD, Zemelman R (2002a) Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212:31–47.  https://doi.org/10.1016/S0044-8486(02)00124-2 CrossRefGoogle Scholar
  73. Miranda CD, Zemelman R (2002b) Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci Total Environ 293:207–218.  https://doi.org/10.1016/S0048-9697(02)00022-0 CrossRefGoogle Scholar
  74. Mirto S, La Rosa T, Danovaro R, Mazzola A (2000) Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the western Mediterranean. Mar Pollut Bull 40:244–252.  https://doi.org/10.1016/S0025-326X(99)00209-X CrossRefGoogle Scholar
  75. Mulsow S, Krieger Y, Kennedy R (2006) Sediment profile imaging (SPI) and micro-electrode technologies in impact assessment studies: example from two fjords in Southern Chile used for fish farming. J Mar Syst 62:152–163.  https://doi.org/10.1016/j.jmarsys.2005.09.012 CrossRefGoogle Scholar
  76. Navarrete P, Magne F, Mardones P, Riveros M, Opazo R, Suau A et al (2009) Molecular analysis of intestinal microbiota of rainbow trout (Oncorhynchus mykiss). FEMS Microbiol Ecol 71:148–156.  https://doi.org/10.1111/j.1574-6941.2009.00769.x CrossRefGoogle Scholar
  77. Navarro N, Leakey RJG, Black KD (2008) Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. Mar Ecol Prog Ser 361:47–58.  https://doi.org/10.3354/meps07357 CrossRefGoogle Scholar
  78. Nikolaou M, Neofitou N, Skordas K, Castritsi-Catharios I, Tziantziou L (2014) Fish farming and anti-fouling paints: a potential source of cu and Zn in farmed fish. Aquacult Environ Interact 5:163–171.  https://doi.org/10.3354/aei00101 CrossRefGoogle Scholar
  79. Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R (2011) Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 35:275–298.  https://doi.org/10.1111/j.1574-6976.2010.00248.x PubMedCrossRefGoogle Scholar
  80. O’Brien DP, Simpson SL, Spadaro DA (2009) Ecological effects due to contamination of sediments with copper-based antifoulants. Part 1: FRDC Project No. 2008/226, 55 pp. Part 2: FRDC Project No. 2009/218, 49 pp. Fisheries Research and Development Corporation and CSIROGoogle Scholar
  81. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2013) vegan: community ecology package. R package version 2.0-8. Available online at: http://CRAN.R-project.org/package=vegan
  82. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462.  https://doi.org/10.1007/s00248-005-0005-6 PubMedCrossRefGoogle Scholar
  83. Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145.  https://doi.org/10.1016/S0168-6496(03)00135-1 PubMedCrossRefGoogle Scholar
  84. Quero GM, Cassin D, Botter M, Perini L, Luna GM (2015) Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front Microbiol 6:1053.  https://doi.org/10.3389/fmicb.2015.01053 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641.  https://doi.org/10.1038/nmeth.1361 PubMedCrossRefGoogle Scholar
  86. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38.  https://doi.org/10.1186/1471-2105-12-38 CrossRefGoogle Scholar
  87. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Home page at: https://www.R-project.org/
  88. Ren Y, Niu J, Huang W, Peng D, Xiao Y, Zhang X et al (2016) Comparison of microbial taxonomic and functional shift pattern along contamination gradient. BMC Microbiol 16:110.  https://doi.org/10.1186/s12866-016-0731-6 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Roberts MC, No D, Kuchmiy E, Miranda CD (2014) Tetracycline resistance gene tet(39) identified in three new genera of bacteria isolated in 1999 from Chilean salmon farms. J Antimicrob Chemother 70:619–621.  https://doi.org/10.1093/jac/dku412 PubMedCrossRefGoogle Scholar
  90. Ruohonen K, Vielma J, Grove DJ (1999) Low-protein supplement increases protein retention and reduces the amounts of nitrogen and phosphorus wasted by rainbow trout fed on low-fat herring. Aquacult Nutr 5:83–91.  https://doi.org/10.1046/j.1365-2095.1999.00090.x CrossRefGoogle Scholar
  91. Sakami T, Abo K, Takayanagi K, Toda S (2003) Effects of water mass exchange on bacterial communities in an aquaculture area during summer. Estuar Coast Shelf Sci 56:111–118.  https://doi.org/10.1016/S0272-7714(02)00126-9 CrossRefGoogle Scholar
  92. Sanz-Lázaro C, Fodelianakis S, Guerrero-Meseguer L, Marín A, Karakassis I (2015) Effects of organic pollution on biological communities of marine biofilm on hard substrata. Environ Pollut 201:17–25.  https://doi.org/10.1016/j.envpol.2015.02.032 PubMedCrossRefGoogle Scholar
  93. Sarà G (2007) Ecological effects of aquaculture on living and non-living suspended fractions of the water column: a meta-analysis. Water Res 41:3187–3200.  https://doi.org/10.1016/j.watres.2007.05.013 PubMedCrossRefGoogle Scholar
  94. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394.  https://doi.org/10.1890/06-0219 PubMedCrossRefGoogle Scholar
  95. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60.  https://doi.org/10.1186/gb-2011-12-6-r60 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Simpson EH (1949) Measurement of diversity. Nature 163:688.  https://doi.org/10.1038/163688a0 CrossRefGoogle Scholar
  98. Simpson SL Spadaro DA (2012) Metal management limits for copper in sediments contaminated through the use of copper-based antifouling paints in aquaculture. CSIRO Wealth from Oceans Flagship, Technical ReportGoogle Scholar
  99. Simpson SL, Spadaro DA, O’Brien D (2013) Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture. Chemosphere 93:2499–2506.  https://doi.org/10.1016/j.chemosphere.2013.08.100 PubMedCrossRefGoogle Scholar
  100. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89CrossRefGoogle Scholar
  101. Soto D, Norambuena F (2004) Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: a large-scale mensurative experiment. J Appl Ichthyol 20:493–501.  https://doi.org/10.1111/j.1439-0426.2004.00602.x CrossRefGoogle Scholar
  102. Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ (2014) Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front Microbiol 5:414.  https://doi.org/10.3389/fmicb.2014.00414 PubMedPubMedCentralGoogle Scholar
  103. Storebakken T, Shearer KD, Roem AJ (2000) Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein. Aquacult Nutr 6:103–108.  https://doi.org/10.1046/j.1365-2095.2000.00135.x CrossRefGoogle Scholar
  104. Sun Y, Wolcott RD, Dowd SE (2011) Tag-Encoded FLX amplicon pyrosequencing for the elucidation of microbial and functional gene diversity in any environment. In: Kwon YM, Ricke SC (eds) High-throughput next generation sequencing: Methods and applications. Humana Press, Totowa, pp 129–141Google Scholar
  105. Tamminen M, Karkman A, Corander J, Paulin L, Virta M (2011) Differences in bacterial community composition in Baltic Sea sediment in response to fish farming. Aquaculture 313:15–23.  https://doi.org/10.1016/j.aquaculture.2011.01.020 CrossRefGoogle Scholar
  106. Tomassetti P, Porrello S (2005) Polychaetes as indicators of marine fish farm organic enrichment. Aquacult Int 13:109–128.  https://doi.org/10.1007/s10499-004-9026-2 CrossRefGoogle Scholar
  107. Tomova A, Ivanova L, Buschmann AH, Rioseco ML, Kalsi RK, Godfrey HP et al (2015) Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep 7:803–809.  https://doi.org/10.1111/1758-2229.12327 PubMedCrossRefGoogle Scholar
  108. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol Biotechnol 17:170–178.  https://doi.org/10.1007/BF01574690 CrossRefGoogle Scholar
  109. Vezzulli L, Chelossi E, Riccardi G, Fabiano M (2002) Bacterial community structure and activity in fish farm sediments of the Ligurian sea (Western Mediterranean). Aquacult Int 10:123–141.  https://doi.org/10.1023/A:1021365829687 CrossRefGoogle Scholar
  110. Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y et al (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl Environ Microbiol 78:8264–8271.  https://doi.org/10.1128/AEM.01821-12 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  112. World Bank (2013) Fish to 2030: prospects for fisheries and aquaculture. Agriculture and environmental services discussion paper 03. World Bank report number 83177-GLB, 102 ppGoogle Scholar
  113. Yao X-F, Zhang J-M, Tian L, Guo J-H (2017) The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz J Microbiol 48:71–78.  https://doi.org/10.1016/j.bjm.2016.09.007 PubMedCrossRefGoogle Scholar
  114. Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat Theory Methods 34:2123–2131.  https://doi.org/10.1080/STA-200066418 CrossRefGoogle Scholar
  115. Zajac RN, Vozarik JM, Gibbons BR (2013) Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure. PLoS One 8:e65823.  https://doi.org/10.1371/journal.pone.0065823 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zak DR, Pregitzer KS, Burton AJ, Edwards IP, Kellner H (2011) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecol 4:386–395.  https://doi.org/10.1016/j.funeco.2011.04.001 CrossRefGoogle Scholar
  117. Zhang W, Ki J-S, Qian P-Y (2008) Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci 76:668–681.  https://doi.org/10.1016/j.ecss.2007.07.040 CrossRefGoogle Scholar
  118. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedPubMedCentralGoogle Scholar
  119. Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD et al (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci U S A 111:E836–E845.  https://doi.org/10.1073/pnas.1324044111 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2017

Authors and Affiliations

  1. 1.Centro i-mar & Center for Biotechnology and Bioengineering (CeBiB)Universidad de Los LagosPuerto MonttChile
  2. 2.Horn Point Laboratory, University of Maryland Center for Environmental ScienceCambridgeUSA

Personalised recommendations