Advertisement

Annals of Microbiology

, Volume 68, Issue 1, pp 1–8 | Cite as

In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis

  • DarwinEmail author
  • Anne Barnes
  • Ralf Cord-Ruwisch
Original Article

Abstract

The end-products of dietary carbohydrate fermentation catalysed by rumen microflora can serve as the primary source of energy for ruminants. However, ruminants provided with continuous carbohydrate-containing feed can develop a metabolic disorder called “acidosis”. We have evaluated the fermentation pattern of both soluble monomeric and non-soluble polymeric carbohydrates in the rumen in in vitro fermentation trials. We found that acidosis could occur within 6 h of incubation in the rumen culture fermenting sugars and starch. The formation of lactic acid and acetic acid, either alone or in mixture with ethanol, accounted for high build-up of acid in the rumen. Acidosis resulted even when only 20% of a normal daily feed load for all soluble and non-soluble carbohydrates was provided. DNA-based microbial analysis revealed that Prevotella was the dominant microbial species present in the rumen fluid.

Keywords

Ruminal acidosis Carbohydrate Fermentation 

Supplementary material

13213_2017_1307_MOESM1_ESM.docx (473 kb)
ESM 1 (DOCX 472 kb)

References

  1. American Public Health Association (APHA) (2012) Standard method for the examination of water and wastewater, 22nd edn. APHA, AWWA, WPCF, Washington D.C.Google Scholar
  2. Bao H, Jiang L, Chen C, Yang C, He Z, Feng Y, Wang A (2015) Combination of ultrasound and Fenton treatment for improving the hydrolysis and acidification of waste activated sludge. RSC Adv 5(60):48468–48473CrossRefGoogle Scholar
  3. Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ (2012) Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nut 142(9):1684–1692CrossRefGoogle Scholar
  4. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. NatMeth 7(5):335–336Google Scholar
  5. Crichlow EC, Chaplin RK (1985) Ruminal lactic acidosis: Relationship of forestomach motility to nondissociated volatile fatty acids levels. Am J Vet Res 46(9):1908–1911PubMedGoogle Scholar
  6. Cullen AJ, Harmon DL, Nagaraja TG (1986) In vitro fermentation of sugars, grains, and by-product feeds in relation to initiation of ruminal lactate Production1. J Dairy Sci 69(10):2616–2621CrossRefPubMedGoogle Scholar
  7. Danscher AM, Li S, Andersen PH, Khafipour E, Kristensen NB, Plaizier JC (2015) Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 57(39):1–14Google Scholar
  8. Department of Primary Industries NSW (2016) Animals and livestock, feeding management. http://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/feed/lotfeeding/feed-mgt. Accessed 17 Aug 2016
  9. Elam CJ (1976) Acidosis in feedlot cattle: Practical observations. J Anim Sci 43(4):898–901CrossRefPubMedGoogle Scholar
  10. Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot JM, Peyret P, Brugère JF (2014) Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J Microbiol Method 96:111–118CrossRefGoogle Scholar
  11. Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, DeSilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490CrossRefPubMedPubMedCentralGoogle Scholar
  12. Franzolin R, Dehority BA (2010) The role of pH on the survival of rumen protozoa in steers. Rev Bras Zootecnia 39(10):2262–2267CrossRefGoogle Scholar
  13. Garrett EF, Pereira MN, Nordlund KV, Armentano LE, Goodger WJ, Oetzel GR (1999) Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J Dairy Sci 82(6):1170–1178CrossRefPubMedGoogle Scholar
  14. Gozho GN, Krause DO, Plaizier JC (2007) Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J Dairy Sci 90(2):856–866CrossRefPubMedGoogle Scholar
  15. Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, Cavanaugh CM (2011) Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J 5(1):20–29CrossRefPubMedGoogle Scholar
  16. Hernandez JD, Scott PT, Shephard RW, Al Jassim RAM (2008) The characterization of lactic acid producing bacteria from the rumen of dairy cattle grazing on improved pasture supplemented with wheat and barley grain. J Appl Microbiol 104(6):1754–1763CrossRefPubMedGoogle Scholar
  17. Hishinuma F, Kanegasaki S, Takahashi H (1968) Ruminal fermentation and sugar concentrations: a model experiment with Selenomonas ruminantium. Agric Biol Chem 32(11):1325–1330Google Scholar
  18. Hobson PN (1965) Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Microbiology 38(2):167–180Google Scholar
  19. Hobson PN, Summers R (1967) The continuous culture of anaerobic bacteria. Microbiology 47(1):53–65Google Scholar
  20. Janssen PH, Evers S, Rainey FA, Weiss N, Ludwig W, Harfoot CG, Schink B (1995) Lactosphaera gen. Nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Evol Microbiol 45(3):565–571Google Scholar
  21. Kahlert H, Meyer G, Albrecht A (2016) Colour maps of acid–base titrations with colour indicators: How to choose the appropriate indicator and how to estimate the systematic titration errors. ChemTexts 2(2):1–28CrossRefGoogle Scholar
  22. Kashongwe, OB, Bebe BO, Matofari JW, Huelsebusch CG (2017) Effects of feeding practices on milk yield and composition in peri-urban and rural smallholder dairy cow and pastoral camel herds in Kenya. Trop Anim Health and Prod 49(5);909–914Google Scholar
  23. Khezri A, Rezayazdi K, Mesgaran MD, Moradi-Sharbabk M (2009) Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and lactation performance of Holstein dairy cows. Asian-Aust J Anim Sci 22(5):651–658CrossRefGoogle Scholar
  24. Kolver ES, De Veth MJ (2002) Prediction of ruminal pH from pasture-based diets. J Dairy Sci 85(5):1255–1266CrossRefPubMedGoogle Scholar
  25. Lettat A, Nozière P, Silberberg M, Morgavi DP, Berger C, Martin C (2010) Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep. J Anim Sci 88(9):3041–3046Google Scholar
  26. Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107(6):1924–1934CrossRefPubMedGoogle Scholar
  27. Malestein AAT, Van’t K, Counotte GHM, Prins RA (1982) Concentrate feeding and ruminal fermentation, 2: Influence of concentrate ingredients on pH and on L-lactate concentration in incubations in vitro with rumen fluid. Neth J Agric Sci 30:259Google Scholar
  28. Mitsumori M, Sun W (2008) Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust J Anim Sci 21(1):144–154CrossRefGoogle Scholar
  29. Nagaraja TG, Taylor MB (1987) Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives. Appl Environ Microbiol 53(7):1620–1625PubMedPubMedCentralGoogle Scholar
  30. Nagel R, Traub RJ, Allcock RJ, Kwan MM, Bielefeldt-Ohmann H (2016) Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome 4(1):47CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oba M (2011) Review: Effects of feeding sugars on productivity of lactating dairy cows. Can J Anim Sci 9(1):37–46CrossRefGoogle Scholar
  32. Oba M, Allen MS (2003) Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations. J Dairy Sci 86(1):174–183CrossRefPubMedGoogle Scholar
  33. Oliveira JSD, Queiroz ACD, Mantovani HC, Melo MRD, Detmann E, Santos EM, Bayão GFV (2011) Effect of propionic and lactic acids on in vitro ruminal bacteria growth. Rev Bras Zootecnia 40(5):1121–1127CrossRefGoogle Scholar
  34. Olson JD (1997) The relationship between nutrition and management to lameness in dairy cattle. Bovine Pract 31:65–68Google Scholar
  35. Owens FN, Secrist DS, Hill WJ, Gill DR (1998) Acidosis in cattle: A review. J Anim Sci 76:275–286CrossRefPubMedGoogle Scholar
  36. Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet J 176(1):21–31CrossRefPubMedGoogle Scholar
  37. Qadis AQ, Satoru GOYA, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Shigeru SATO (2014) Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J Vet Med Sci 76(6):877CrossRefPubMedPubMedCentralGoogle Scholar
  38. Russell JB, Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79(8):1503–1509CrossRefPubMedGoogle Scholar
  39. Slyter LL (1976) Influence of acidosis on rumen function. J Anim Sci 43(4):910–929CrossRefPubMedGoogle Scholar
  40. Somkuti GA, Steinberg DH (2003) Pediocin production by recombinant lactic acid bacteria. Biotechnol Lett 25(6):473–477CrossRefPubMedGoogle Scholar
  41. Sutton JD (1968) The fermentation of soluble carbohydrates in rumen contents of cows fed diets containing a large proportion of hay. Br J Nutr 22(04):689–712CrossRefPubMedGoogle Scholar
  42. Weisbjerg MR, Hvelplund T, Bibby BM (1998) Hydrolysis and fermentation rate of glucose, sucrose and lactose in the rumen. Acta Agric Scand A Anim Sci 48(1):12–18Google Scholar
  43. Ye JA, Liu JX, Ya J (1996) The effects of ammoniated rice straw diets supplemented with Chinese milk vetch silage on rumen fermentation and microflora in sheep. Livestock Res Rural Dev 8(4):45–52Google Scholar

Copyright information

© Springer-Verlag GmbH Germany and the University of Milan 2017

Authors and Affiliations

  1. 1.School of Environmental EngineeringMurdoch UniversityMurdochAustralia
  2. 2.Department of Agricultural EngineeringSyiah Kuala UniversityBanda AcehIndonesia
  3. 3.School of Veterinary and Life Sciences, College of Veterinary MedicineMurdoch UniversityMurdochAustralia

Personalised recommendations