Advertisement

Annals of Microbiology

, Volume 67, Issue 1, pp 135–141 | Cite as

Diversity of species and antibiotic resistance in enterococci isolated from seafood in Tunisia

  • Leila Ben Said
  • Mouna Hamdaoui
  • Amira Klibi
  • Karim Ben Slama
  • Carmen Torres
  • Naouel KlibiEmail author
Original Article

Abstract

The purpose of this study was to analyse the antibiotic resistance and virulence of enterococci recovered from seafood and to characterise the associated genes. Forty-four enterococcal isolates [Enterococcus faecalis (21), E. faecium (11), E. casseliflavus (5), E. durans (3), E. hirae (2), E. gallinarum (1) and E. mundtii (1)] were recovered from 70 samples of seafood collected during March–May 2015 in Tunisia. Isolates were tested for antibiotic resistance to 12 antibiotics by the disc diffusion method. Rates of resistance in the range 25–45.5% were observed for pristinamycin, ciprofloxacin, streptomycin, tetracycline and erythromycin, and in the range 6.8–9.1% for kanamycin, gentamicin and chloramphenicol. However, all strains showed susceptibility to β-lactams and glycopeptides. Multi-resistance to at least three different classes of antibiotics was detected in 14 strains (31.8%). Among 12 tetracycline-resistant enterococci, tet(M) was detected in 11 isolates and tet(L) in seven isolates. The erm(B) gene was identified in 91% of erythromycin-resistant isolates. All chloramphenicol-resistant isolates carried the cat gene, and all kanamycin-resistant isolates harboured the aph(3)-IIIa gene. The aac(6′)-aph(2″) and ant(6)-Ia genes were detected in high-level gentamicin- and streptomycin-resistant isolates, respectively. The virulence genes gelE (29.5%), esp (9.1%), cylA and cylB (9.1%) were found in enterococci. This is the first study in Tunisia to underscore the importance of seafood as a reservoir of enterococci carrying resistance and virulence genes.

Keywords

Seafood Enterococci Tunisia Antibiotic resistance genes Virulence factors 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare that there are no conflicts of interest.

References

  1. Abriouel H, Ben Omar N, Cobo Molinos A, Lucas López R, Grande MJ, Martínez-Viedma P, Ortega E, Martinez Cañamero M, Galvez A (2008) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol 123:38–49CrossRefPubMedGoogle Scholar
  2. Al Bulushi IM, Poole SE, Barlow R, Deeth HC, Dykes GA (2010) Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. Int J Food Microbiol 138:32–38CrossRefPubMedGoogle Scholar
  3. Araújo C, Torres C, Gonçalves A, Carneiro C, López M, Radhouani H, Pardal M, Igrejas G, Poeta P (2011) Genetic detection and multilocus sequence typing of vanA-containing Enterococcus strains from mullets fish (Liza ramada). Microb Drug Resist 17(3):357–361CrossRefPubMedGoogle Scholar
  4. Barros J, Igrejas G, Andrade M, Radhouani H, López M, Torres C, Poeta P (2011) Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. a potential bioindicator of marine contamination? Mar Pollut Bull 62:1245–1248CrossRefPubMedGoogle Scholar
  5. Barros J, Andrade M, Radhouani H, López M, Igrejas G, Poeta P, Torres C (2012) Detection of vanA-containing Enterococcus species in faecal microbiota of gilthead Seabream (Sparus aurata). Microbes Environ 27(4):509–511CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ben Said L, Klibi N, Lozano C, Dziri R, Ben Slama K, Boudabous A, Torres C (2015) Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia. Sci Total Environ 530–531:11–17CrossRefPubMedGoogle Scholar
  7. Ben Said L, Klibi N, Dziri R, Borgo F, Boudabous A, Ben Slama K, Torres C (2016) Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J Sci Food Agric 96(5):1627–1633CrossRefPubMedGoogle Scholar
  8. Boss R, Overesch G, Baumgartner A (2016) Antimicrobial resistance of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. J Food Prot 79(7):1240–1246CrossRefPubMedGoogle Scholar
  9. Bourdon N (2011) Épidémiologie de la résistance aux antibiotiques chez les entérocoques en France. J Anti Infect 13:2–11CrossRefGoogle Scholar
  10. CA-SFM (2010) Comité de l’Antibiogramme de la Société Française de Microbiologie. 289. Edition de Janvier 2010, 49 ppGoogle Scholar
  11. Carvalho EMR, Costa RA, Araújo AJG, Carvalho FCT, Pereira SP, Sousa OV, Vieira RHSF (2014) Multiple antibiotic-resistance of Enterococcus isolated from coastal water near an outfall in Brazil. Afr J Microbiol Res 8(17):1825–1831CrossRefGoogle Scholar
  12. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. CLSI, Wayne, PAGoogle Scholar
  14. del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Intern J Antimicrob Agents 15:221–226CrossRefGoogle Scholar
  15. Devriese L, Baele M, Butaye P (2006) The genus Enterococcus: taxonomy. Prokaryotes 4:163–174Google Scholar
  16. Di Cesare A, Vignaroli C, Luna GM, Pasquaroli S, Biavasco F (2012) Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microb Drug Resist 18(5):502–509CrossRefPubMedGoogle Scholar
  17. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elhani D, Klibi N, Dziri R, Ben Hassan M, Asli Mohamed S, Ben Said L, Mahjoub A, Ben Slama K, Jemli B, Bellaj R, Barguellil F, Torres C (2014) vanA-containing E. faecium isolates of clonal complex CC17 in clinical and environmental samples in a Tunisian hospital. Diagn Microbiol Infect Dis 79:60–63CrossRefPubMedGoogle Scholar
  19. Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24CrossRefPubMedGoogle Scholar
  20. Gousia P, Economou V, Bozidis P, Papadopoulou C (2015) Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathog Dis 12(3):214–220CrossRefPubMedGoogle Scholar
  21. Hammad AM, Shimamoto T, Shimamoto T (2014) Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiol 38:62–66CrossRefPubMedGoogle Scholar
  22. Hayes JR, English LL, Carter PJ, Proescholdt T, Lee KY, Wagner DD, White DG (2003) Prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Appl Environ Microbiol 69(12):7153–7160CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huys G, D’Haene K, Collard JM, Swings J (2004) Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. App Environ Microbiol 70:1555–1562CrossRefGoogle Scholar
  24. Jung WK, Lim JY, Kwon NH, Kim JM, Hong SK, Koo HC, Kim SH, Park YH (2007) Vancomycin-resistant enterococci from animal sources in Korea. Int J Food Microbiol 113:102–107CrossRefPubMedGoogle Scholar
  25. Kasimoglu-Dogru A, Gencay YE, Ayaz ND (2010) Prevalence and antibiotic resistance profiles of Enterococcus species in chicken at slaughter level, absence of vanA and vanB genes in E. faecalis and E. faecium. Res Vet Sci 89:153–158CrossRefPubMedGoogle Scholar
  26. Khan AA, Nawaz MS, Khan SA, Steele R (2002) Detection and characterization of erythromycin-resistant methylase genes in Gram-positive bacteria isolated from poultry litter. Appl Microbiol Biotechnol 59:377–381CrossRefPubMedGoogle Scholar
  27. Klibi N, Ben Slama K, Masmoudi A, Gharbi S, Ruiz-Larrea F, Fendri C, Boudabous A, Torres C (2006) Diversity of structures carrying the aac(6’)-aph(2”) gene in clinical Enterococcus faecalis and Enterococcus faecium strains isolated in Tunisia. J Chemother 18:353–359CrossRefPubMedGoogle Scholar
  28. Klibi N, Ben Slama K, Sáenz Y, Masmoudi A, Zanetti S, Sechi LA, Boudabous A, Torres C (2007) Detection of virulence factors in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolates from a Tunisian hospital. Can J Microbiol 53:372–379CrossRefPubMedGoogle Scholar
  29. Klibi N, Ben Said L, Jouini A, Ben Slama K, López M, Ben Sallem R, Boudabous A, Torres C (2013) Species distribution, antibiotic resistance and virulence traits in enterococci from meat in Tunisia. Meat Sci 93:675–680CrossRefPubMedGoogle Scholar
  30. Klibi N, Aouini R, Borgo F, Ben Said L, Ferrario C, Dziri R, Boudabous A, Torres C, Ben Slama K (2015) Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann Microbiol 65(2):695–702CrossRefGoogle Scholar
  31. Laverde Gomez JA, Van Schaik W, Freitas AR, Coque TM, Weaver KE, Francia MV, Witte W, Werner G (2011) A multiresistance megaplasmid pLG1 bearing a hylEfm genomic island in hospital Enterococcus faecium isolates. Int J Med Microbiol 301:165–175CrossRefPubMedGoogle Scholar
  32. Michel C, Pelletier C, Boussaha M, Douet DG, Lautraite A, Tailliez P (2007) Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis. Appl Environ Microbiol 73(9):2947–2955CrossRefPubMedPubMedCentralGoogle Scholar
  33. Migaw S, Ghrairi T, Le Chevalier P, Brillet B, Fleury Y, Hani K (2013) Isolation and characterization of enterococci bacteriocinic strains from Tunisian fish viscera. Food Nutr Sci 4:701–708CrossRefGoogle Scholar
  34. Noor Uddin GM, Larsen MH, Guardabassi L, Dalsgaard A (2013) Bacterial flora and antimicrobial resistance in raw frozen cultured seafood imported to Denmark. J Food Prot 76(3):490–499CrossRefPubMedGoogle Scholar
  35. Novais C, Coque TM, Costa MJ, Sousa JC, Baquero F, Peixe LV (2005) High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother 56:1139–1143CrossRefPubMedGoogle Scholar
  36. Omar NB, Castro A, Lucas R, Abriouel H, Yousif NMK, Franz CMAP, Holzapfel WH, Rubén PP, Martínez-Canãmero M, Gálvez A (2004) Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130CrossRefPubMedGoogle Scholar
  37. Petersen A, Dalsgaard A (2003) Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture 219:71–82CrossRefGoogle Scholar
  38. Raveh D, Rosenzweig I, Rudensky B, Wiener-Well Y, Yinnon AM (2006) Risk factors for bacteriuria due to Pseudomonas aeruginosa or Enterococcus spp in patients hospitalized via the emergency department. Eur J Clin Microbiol Infect Dis 25:331–334CrossRefPubMedGoogle Scholar
  39. Sergelidis D, Abrahim A, Papadopoulos T, Kirkoudis J, Anagnostou V, Papavergou A, Papa A (2013) Antimicrobial susceptibility of Enterococcus spp. isolated from freshwater fish and personnel and equipment of fish markets in northern Greece. J Hellenic Vet Med Soc 64(4):239–248Google Scholar
  40. Suppli M, Aabenhus R, Harboe ZB, Andersen LP, Tvede M, Jensen J-US (2011) Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy. Clin Microbiol Infect 17:1078–1083CrossRefPubMedGoogle Scholar
  41. Tahrani L, Van Loco J, Ben Mansour H, Reyns T (2016) Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia. J Water Health 14(2):208–213CrossRefPubMedGoogle Scholar
  42. Valenzuela AS, Benomar N, Abriouel H, Cañamero MM, Gálvez A (2010) Isolation and identification of Enterococcus faecium from seafoods: antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol 27:955–961CrossRefPubMedGoogle Scholar
  43. Wilson IG, McAfee GG (2002) Vancomycin-resistant enterococci in shellfish, unchlorinated waters, and chicken. Int J Food Microbiol 79:143–151CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2016

Authors and Affiliations

  • Leila Ben Said
    • 1
  • Mouna Hamdaoui
    • 1
  • Amira Klibi
    • 1
  • Karim Ben Slama
    • 1
  • Carmen Torres
    • 2
  • Naouel Klibi
    • 1
    Email author
  1. 1.Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Área de Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain

Personalised recommendations