Advertisement

Annals of Microbiology

, Volume 66, Issue 4, pp 1387–1395 | Cite as

Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains

  • Irakli Janashia
  • Domenico Carminati
  • Lia Rossetti
  • Miriam Zago
  • Maria Emanuela Fornasari
  • Thomas HaertléEmail author
  • Nina Chanishvili
  • Giorgio Giraffa
Original Article

Abstract

Microbial symbionts of honeybee colony are considered as promising tools to support the honeybee population welfare. The majority of existing honeybee microbiota studies is focused on genetic description of the honeybee-associated microbiome fingerprints. The lack of a deeper knowledge on the bacterial community colonizing the honeybee niche, which may be helpful in encouraging industrial applications of this microbiota, led us to undertake this study. The biodiversity of the cultivable fructophilic lactic acid bacteria (FLAB) isolated from adult honeybee intestine and beebread samples was studied. Phenotypic properties of probiotic interest, such as the adhesive potential using in vitro models and adhesion determinants, were also investigated. Antibiotic resistance profiles as reliable markers to evaluate the impact of long-term and current exposure of honeybees to antibiotics were phenotypically determined on the isolated lactic acid bacteria (LAB). The mannose-specific adhesion and high cell surface hydrophobicity found in the studied FLAB isolates sheds light on the effective adaptation of microbiota to specific ecologic niche. It is the first report of phenotypically detected antibiotic resistance profiles of honeybee endogenous bacteria and the first account of minimum inhibitory concentration (MIC) values for four antibiotics used in beekeeping practice.

Keywords

Fructophilic lactic acid bacteria Honeybees Microbial adhesion Caucasus 

Notes

Acknowledgments

The author I.J. would like to express his gratitude to the Shota Rustaveli National Science Foundation (SRNSF) for partial support allowing his PhD training in Italy. The author also expresses his gratitude to the Service of Science and Technology of the French Embassy in Tbilisi for the fellowship allowing his PhD training in France.

Supplementary material

13213_2016_1226_MOESM1_ESM.pdf (72 kb)
ESM 1 (PDF 71 kb)

References

  1. Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V (2013) Review: towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol 50:868–880CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S et al (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7:e44229. doi: 10.1371/journal.pone.0044229 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carina Audisio M, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166:1–13CrossRefPubMedGoogle Scholar
  4. Carminati D, Tidona F, Fornasari ME, Rossetti L, Meucci A, Giraffa G (2014) Biotyping of cultivable lactic acid bacteria isolated from donkey milk. Lett Appl Microbiol 59:299–305CrossRefPubMedGoogle Scholar
  5. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E et al (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317CrossRefPubMedPubMedCentralGoogle Scholar
  6. Duary RK, Rajput YS, Batish VK, Grover S (2011) Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res 134:664–671CrossRefPubMedPubMedCentralGoogle Scholar
  7. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. doi: 10.2903/j.efsa.2012.2740 CrossRefGoogle Scholar
  8. Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36:444–448CrossRefPubMedGoogle Scholar
  9. Endo A, Futagawa-Endo Y, Dicks LM (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32:593–600CrossRefPubMedGoogle Scholar
  10. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:11002–11007CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evans JD, Armstrong TN (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol 6:4. doi: 10.1186/1472-6785-6-4 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756CrossRefPubMedGoogle Scholar
  13. Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108CrossRefGoogle Scholar
  14. Giraffa G, Neviani E (2000) Molecular identification and characterization of food-associated lactobacilli. Ital J Food Sci 12:403–423Google Scholar
  15. Gurgulova K, Panchev I, Stanchev P (2003) A study on antibacterial activity of Riphampizyn against bee disease microorganisms. Uludag Bee J 11:40–41Google Scholar
  16. Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532PubMedPubMedCentralGoogle Scholar
  17. Kaufmann A, Kaenzig A (2004) Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide. Food Addit Contam 21:564–571CrossRefPubMedGoogle Scholar
  18. Kim SY, Ogawa Y, Adachi Y (2006) Canine intestinal lactic acid bacteria agglutinated with concanavalin A. J Vet Med Sci 68:1351–1354CrossRefPubMedGoogle Scholar
  19. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313CrossRefPubMedGoogle Scholar
  20. Köhler GA, Assefa S, Reid G (2012) Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012:636474. doi: 10.1155/2012/636474 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Levy SB, Marshall BM (2013) Honeybees and tetracycline resistance. MBio 4:e00045-13. doi: 10.1128/mBio.00045-13 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mercenier A, Lenoir-Wijnkoop I, Sanders ME (2008) Physiological and functional properties of probiotics. Bull Int Dairy Fed 429:2–6Google Scholar
  23. Murray KD, Aronstein KA, Eischen F (2009) Promiscuous DNA and terramycin resistance in American foulbrood bacteria. Am Bee J 149:577–581Google Scholar
  24. Neveling DP, Endo A, Dicks LM (2012) Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Curr Microbiol 65:507–515CrossRefPubMedGoogle Scholar
  25. Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57:356–363CrossRefPubMedGoogle Scholar
  26. Ortelli D, Edder P, Corvi C (2004) Analysis of chloramphenicol residues in honey by liquid chromatography–tandem mass spectrometry. Chromatographia 59:61–64CrossRefGoogle Scholar
  27. Pilatic H (2012) Pesticides and honey bees. State of the Science. Report from the Pesticide Action Network North AmericaGoogle Scholar
  28. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  29. Reybroeck W, Daeseleire E, De Brabander HF, Herman L (2012) Antimicrobials in beekeeping. Vet Microbiol 158:1–11CrossRefPubMedGoogle Scholar
  30. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402SPubMedGoogle Scholar
  31. Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods 63:135–144CrossRefPubMedGoogle Scholar
  32. Rossetti L, Carminati D, Zago M, Giraffa G (2009) A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. Int J Food Microbiol 130:70–73CrossRefPubMedGoogle Scholar
  33. Salminen S, van Loveren H (2012) Probiotics and prebiotics: health claim substantiation. Microb Ecol Health Dis 23:18568Google Scholar
  34. Smodis Skerl MI, Kmecl V, Gregorc A (2010) Exposure to pesticides at sublethal level and their distribution within a honey bee (Apis mellifera) colony. Bull Environ Contam Toxicol 85:125–128CrossRefPubMedGoogle Scholar
  35. Suárez V, Zago M, Giraffa G, Reinheimer J, Quiberoni A (2009) Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii. J Dairy Res 76:433–440CrossRefPubMedGoogle Scholar
  36. Tian B, Fadhil NH, Powell JE, Kwong WK, Moran NA (2012) Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. MBio 3:e00377-12. doi: 10.1128/mBio.00377-12 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tirado R, Simon G, Johnston P (2013) Bees in decline. A review of factors that put pollinators and agriculture in Europe at risk. Greenpeace Research Laboratories Technical Report (Review)Google Scholar
  38. Vásquez A, Olofsson TC (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread. J Apicult Res 48:189–195CrossRefGoogle Scholar
  39. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L et al (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7:e33188. doi: 10.1371/journal.pone.0033188 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41Google Scholar
  41. Vidal JLM, Aguilera-Luiz MDM, Romero-González R, Frenich AG (2009) Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 57:1760–1767CrossRefPubMedGoogle Scholar
  42. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904CrossRefGoogle Scholar
  43. Vojvodic S, Rehan SM, Anderson KE (2013) Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 8:e72106. doi: 10.1371/journal.pone.0072106 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wu M, Sugimura Y, Taylor D, Yoshiyama M (2013) Honeybee gastrointestinal bacteria for novel and sustainable disease control strategies. J Dev Sust Agric 8:85–90Google Scholar
  45. Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C (2013) Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 112:62–67CrossRefPubMedGoogle Scholar
  46. Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G et al (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2016

Authors and Affiliations

  • Irakli Janashia
    • 1
    • 5
  • Domenico Carminati
    • 2
  • Lia Rossetti
    • 2
  • Miriam Zago
    • 2
  • Maria Emanuela Fornasari
    • 2
  • Thomas Haertlé
    • 3
    • 4
    Email author
  • Nina Chanishvili
    • 1
  • Giorgio Giraffa
    • 2
  1. 1.Eliava Institute of Bacteriophages, Microbiology and VirologyTbilisiGeorgia
  2. 2.Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC)LodiItaly
  3. 3.FIP, UR1268, Biopolymers Interactions AssembliesINRANantes Cedex 3France
  4. 4.Department of Animal Nutrition and Feed ManagementPoznan University of Life SciencesPoznańPoland
  5. 5.Javakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations