Annals of Microbiology

, Volume 66, Issue 3, pp 1157–1166 | Cite as

Acetobacter suratthanensis sp. nov., an acetic acid bacterium isolated in Thailand

  • Nittaya Pitiwittayakul
  • Gunjana Theeragool
  • Pattaraporn Yukphan
  • Winai Chaipitakchonlatarn
  • Taweesak Malimas
  • Yuki Muramatsu
  • Somboon Tanasupawat
  • Yasuyoshi Nakagawa
  • Yuzo Yamada
Original Article

Abstract

A Gram-negative, rod-shaped, and non-motile bacterium, designated as AI32T, was isolated from a fruit in Surat Thani, the southern district of Thailand. Phylogenetic analyses of the 16S rRNA gene, 16S-23S rRNA gene ITS, and groEL gene sequences showed that the isolate formed a quite independent cluster located outside the clusters of Acetobacter peroxydans and Acetobacter papayae. Analysis of 16S rRNA gene sequence showed that the isolate was related to the type strains of A. peroxydans and A. papayae, respectively, with 99.4 % and 99.3 % similarities. The DNA G + C content of the isolate was 59.6 mol%. The isolate was positive in catalase test and showed no growth on ethanol in the presence of ammonium sulfate. The isolate produced only d-gluconic acid from d-glucose. The predominant fatty acid of isolate AI32T was C18:1ω7C. Based on the results obtained in physiological and biochemical tests and in genotypic differences between the isolate and the type strains of the validly named species of the genus Acetobacter, the isolate is classified as a novel species, for which the name of Acetobacter suratthanensis sp. nov. is introduced. The type strain of the species is AI32T (= BCC 26087T = NBRC 111399T).

Keywords

Acetic acid bacterium Acetobacter suratthanensis sp. nov. groEL gene sequences 16S rRNA gene sequences 16S-23S rRNA gene ITS sequences 

Notes

Acknowledgments

A part of this work was carried out through collaboration in the Core to Core Program supported by the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT). We express our thanks to Mr. Richard James Goldrick, Department of Foreign Languages, Kasetsart University for English editing of this manuscript.

References

  1. Asai T, Iizuka H, Komagata K (1964) The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126CrossRefGoogle Scholar
  2. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swing J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558PubMedGoogle Scholar
  3. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, De Vuyst L (2007) Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57:1647–1652CrossRefPubMedGoogle Scholar
  4. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P, De Vuyst L (2008) Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 58:2180–2185CrossRefPubMedGoogle Scholar
  5. Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60:2277–2283CrossRefPubMedGoogle Scholar
  6. Devereux R, Wills SG (1995) Amplification of ribosomal RNA sequences. In: Akkermans ADL, van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Academic, Dordrecht, pp 3.3.1–3.3.2Google Scholar
  7. Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903CrossRefPubMedGoogle Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. González A, Mas A (2011) Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int J Food Microbiol 147:217–222CrossRefPubMedGoogle Scholar
  11. Gosselé J, Swings J, De Ley J (1980) A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-dike-togluconic acid by thin layer chromatography in culture media of acetic acid bacteria. Zbl Bakt Hyg I Abt Orig C 178–181Google Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Huang CH, Chang MT, Huang L, Chua WS (2014) Molecular discrimination and identification of Acetobacter genus based on the partial heat shock protein 60 gene (hsp60) sequences. J Sci Food Agric 94:213–218CrossRefPubMedGoogle Scholar
  14. Hucker GJ, Conn HJ (1923) Method of gram staining. Tech Bull NY St Agric Exp Stn 93:3–37Google Scholar
  15. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2012) Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. J Gen Appl Microbiol 58:235–243CrossRefPubMedGoogle Scholar
  16. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2013) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 149. Int J Syst Evol Microbiol 63:1–5CrossRefGoogle Scholar
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  19. Li L, Wieme AD, Spitaels F, Balzarini T, Nunes OC, Manaia CM, Van Landschoot A, De Vuyst L, Cleenwerck I, Vandamme PA (2014) Acetobacter sicerae sp. nov., isolated from cider and kefir and identification of Acetobacter species by dnaK, groEL and rpoB sequence analysis. Int J Syst Evol Microbiol 64:2407–2415CrossRefPubMedGoogle Scholar
  20. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg, 1996) comb. nov., Acetobacter lovaniensis (Frateur, 1950) comb. nov., and Acetobacter estunensis (Carr, 1958) comb. nov. J Gen Appl Microbiol 46:147–165CrossRefPubMedGoogle Scholar
  21. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001a) Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation List no. 79. Int J Syst Evol Microbiol 51:263–265CrossRefGoogle Scholar
  22. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001b) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47:119–131CrossRefPubMedGoogle Scholar
  23. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2002) Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation List no. 84. Int J Syst Evol Microbiol 52:3–4CrossRefGoogle Scholar
  24. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150CrossRefPubMedGoogle Scholar
  25. Ndoye B, Cleenwerck I, Engelbeen K, Dubois-Dauphin R, Guiro AT, Van Trappen S, Willems A, Thonart P (2007) Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L.). Int J Syst Evol Microbiol 57:1576–1581CrossRefPubMedGoogle Scholar
  26. Okumura H, Uozumi T, Beppu T (1985) Construction of plasmid vectors and genetic transformation system for Acetobacter aceti. Agric Biol Chem 49:1011–1017Google Scholar
  27. Pitiwittayakul N, Yukphan P, Chaipitakchonlatarn W, Yamada Y, Theeragool G (2015a) Acetobacter thailandicus sp. nov., for a strain isolated in Thailand. Ann Microbiol 65:1855–1863CrossRefGoogle Scholar
  28. Pitiwittayakul N, Yukphan P, Sintuprapa W, Yamada Y, Theeragool G (2015b) Identification of acetic acid bacteria isolated in Thailand and assigned to the genus Acetobacter by groEL gene sequence analysis. Ann Microbiol 65:1557–1564CrossRefGoogle Scholar
  29. Ruiz A, Poblet M, Mas A, Guillamon JM (2000) Identification of acetic acid bacteria by RFLP of PCR amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int J Syst Evol Microbiol 50:1981–1987CrossRefPubMedGoogle Scholar
  30. Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629CrossRefPubMedGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Seearunruangchai A, Tanasupawat S, Keeratipibut S, Thawai C, Itoh T, Yamada Y (2004) Identification of acetic acid bacteria isolated from fruits and related materials collected in Thailand. J Gen Appl Microbiol 50:47–53CrossRefPubMedGoogle Scholar
  33. Silva LR, Cleenwerck I, Rivas R, Swings J, Trujillo ME, Willems A, Velázquez E (2006) Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56:21–24CrossRefPubMedGoogle Scholar
  34. Skerman VBD, McGowan V, Sneath PHA (1980) Approved Lists of Bacterial Names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  35. Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940CrossRefPubMedGoogle Scholar
  36. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P (2014) Acetobacter lambici sp. nov. isolated from fermenting lambic beer. Int J Syst Evol Microbiol 64:1083–1089CrossRefPubMedGoogle Scholar
  37. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tanasupawat S, Kommanee J, Yukphan P, Muramatsu Y, Nakagawa Y, Yamada Y (2011a) Acetobacter farinalis sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 57:159–167CrossRefPubMedGoogle Scholar
  40. Tanasupawat S, Kommanee J, Yukphan P, Muramatsu Y, Nakagawa Y, Yamada Y (2011b) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 142. Int J Syst Evol Microbiol 61:2563–2565CrossRefGoogle Scholar
  41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  42. Verlander CP (1992) Detection of horseradish peroxidase by colorimetry. In: Kricka LJ (ed) Nonisotopic DNA probe techniques. Academic, New York, pp 185–201CrossRefGoogle Scholar
  43. Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24CrossRefPubMedGoogle Scholar
  44. Yamada Y, Aida K, Uemura T (1969) Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15:181–196CrossRefGoogle Scholar
  45. Yamada Y, Okada Y, Kondo K (1976) Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22:237–245CrossRefGoogle Scholar
  46. Yamada Y, Hosono R, Lisdiyanti P, Widyastuti Y, Saono S, Uchimura T, Komagata K (1999) Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 45:23–28CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2016

Authors and Affiliations

  • Nittaya Pitiwittayakul
    • 1
  • Gunjana Theeragool
    • 2
  • Pattaraporn Yukphan
    • 3
  • Winai Chaipitakchonlatarn
    • 3
  • Taweesak Malimas
    • 4
  • Yuki Muramatsu
    • 5
  • Somboon Tanasupawat
    • 6
  • Yasuyoshi Nakagawa
    • 5
  • Yuzo Yamada
    • 3
    • 7
    • 8
  1. 1.Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal ArtsRajamangala University of Technology IsanNakhon RatchasimaThailand
  2. 2.Department of Microbiology, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Khlong LuangThailand
  4. 4.Thailand Institute of Scientific and Technological Research (TISTR)Khlong LuangThailand
  5. 5.NITE Biological Resource CenterNational Institute of Technology and EvaluationKisarazuJapan
  6. 6.Department of Biochemistry and Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  7. 7.Laboratory of Applied Microbiology (Professor Emeritus), Department of Applied Biological Chemistry, Faculty of AgricultureShizuoka UniversityShizuokaJapan
  8. 8.Japan International Cooperation Agency (JICA Senior Overseas Volunteer)TokyoJapan

Personalised recommendations