Annals of Microbiology

, Volume 66, Issue 2, pp 931–935 | Cite as

Laboratory maintained and wild populations of Hydra differ in their microbiota

  • Swapnil S. Gaikwad
  • Somak P. Chowdhury
  • Yogesh S. Shouche
  • Saroj Ghaskadbi
  • Surendra GhaskadbiEmail author
Short Communication


Very often, the microbial composition of lab-maintained model organisms is significantly different compared to their natural counterparts. Controlled environment in the lab versus dynamic conditions in the wild could be one of the reasons for such differences. Considering the impact of microbes on development, immunology, ecology, evolution, etc., it is very important to explore the microbial structure of the host from both lab and wild populations. In this study we have explored the microbiota of H. vulgaris collected from two localities in India as well as lab-maintained populations, using Ion torrent PGM. All samples were dominated by phylum Proteobacteria; however, at a deeper taxonomic level, microbial structure of the samples collected from different localities showed notable differences among them and the lab-maintained population as well. Knowledge of such variation in microbiota of the host could aid in our understanding of host–microbiota interaction.


Environmental influence Hydra Microbial diversity Next Generation Sequencing 



This study was funded by extramural grants from the Department of Science and Technology (DST), Government of India to Surendra Ghaskadbi and a DST-PURSE grant to Saroj Ghaskadbi. YSS wishes to thank Department of Biotechnology (DBT), Government of India for financial support. We would like to thank Dr. Nachiket Marathe and Dr. Om Prakash Sharma for their valuable comments.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13213_2015_1177_MOESM1_ESM.doc (48 kb)
Supplementary Table 1 (DOC 48 kb)
13213_2015_1177_MOESM2_ESM.doc (86 kb)
Supplementary Figure 1 (DOC 86 kb)
13213_2015_1177_MOESM3_ESM.doc (673 kb)
Supplementary Figure 2 (DOC 673 kb)


  1. Bosch TCG (2012) What Hydra has to say about the role and origin of symbiotic interactions. Biol Bull 223:78–84PubMedGoogle Scholar
  2. Caporaso JGJ, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chandler JA, Lang JM, Bhatnagar S, Elsen JA, Kopp A (2011) Bacterial communities of diverse drosophila species: ecological context of a host–microbe model system. Plos Genet 7(9):e1007272CrossRefGoogle Scholar
  4. Collins SM (2014) A role for the gut microbiota in IBS. Gastroenterol Hepatol 497–505Google Scholar
  5. Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73:3470–3479CrossRefPubMedPubMedCentralGoogle Scholar
  6. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. PNAS E3730–E3738Google Scholar
  7. Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG (2014) Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J 7(4):1–10Google Scholar
  8. Fraune S, Bosch TCG (2007) Long term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci U S A 104(32):13146–13151CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fraune S, Augustin R, Bosch TCG (2009) Exploring host microbe interaction in Hydra. Microbe 4:457–462Google Scholar
  10. Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schroder K, Willoweit-Ohl D, Bosch TCG (2014) Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME 1–14Google Scholar
  11. Grasis JA, Lachnit T, Anton-Erxleben F, LIm YW, Schmieder R, Fraune S, Franzenburg S, Insua S, Machado G, Haynes M, Littile M, Kimble R, Rosenstiel P, Rohwer FL, Bosch TC (2014) Species specific viriomes in the ancestral holobiont Hydra. Plos One 9(10):e109952CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kohl KD, Skopec MM, Dearing MD (2014) Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Physiol 2:1–11CrossRefGoogle Scholar
  13. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host–microbiota interactions in animal models and humans. Genes Dev 27:701–718CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lee WJ, Brey PT (2013) How microbe influence metazoan development: insights from history and Drosophila modeling of gut microbes interaction. Annu Rev Cell Dev Biol 29:571–592CrossRefPubMedGoogle Scholar
  15. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME 8:830–840CrossRefGoogle Scholar
  16. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  17. O’connor TK, Humphrey PT, Lapoint RT, Whiteman NK, O’Grady PM (2014) Microbial interaction and the ecology and evolution of Hawaiin Drosophildae. Front Microbiol 5(616):1–8Google Scholar
  18. Reddy PC, Barve A, Ghaskadbi S (2011) A description and phylogenetic characterization of common Hydra from India. Curr Sci 101:736–738Google Scholar
  19. Roesselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME 5:1595–1608CrossRefGoogle Scholar
  20. Rosenberg IZ, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenometheoryof evolution. FEMS Microbiol Rev 32:723–735CrossRefPubMedGoogle Scholar
  21. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782CrossRefPubMedGoogle Scholar
  22. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 1501–1506Google Scholar
  23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sullam KE, Rubin BER, Dalton CM, Kilham SS, Flecker AS, Russell JA (2015) Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME 1–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2015

Authors and Affiliations

  • Swapnil S. Gaikwad
    • 1
    • 2
    • 3
  • Somak P. Chowdhury
    • 3
  • Yogesh S. Shouche
    • 3
  • Saroj Ghaskadbi
    • 1
  • Surendra Ghaskadbi
    • 4
    Email author
  1. 1.Department of ZoologySavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of BiotechnologySavitribai Phule Pune UniversityPuneIndia
  3. 3.Microbial Culture Collection (MCC)Pashan PuneIndia
  4. 4.Developmental BiologyMACS-Agharkar Research InstitutePuneIndia

Personalised recommendations