Annals of Microbiology

, Volume 66, Issue 2, pp 765–775 | Cite as

Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv.

  • Aretusa Cristina Felber
  • Ravely Casarotti Orlandelli
  • Sandro Augusto Rhoden
  • Adriana Garcia
  • Alessandra Tenório Costa
  • João Lúcio Azevedo
  • João Alencar Pamphile
Original Article
  • 280 Downloads

Abstract

Endophytic fungi colonize the interior of plant tissues and organs, establishing an intimate mutualistic association with no visible symptoms. The fungi may help protect the plant against herbivores and pathogens, making them potentially useful endophytes in the biological control of diseases and agricultural pests. The biotechnological interest in these organisms has stimulated research related to the bioprospecting of endophytic fungi. Grapevine is among the oldest of plants cultivated by man, with the grape being one of the most highly consumed fruits in the world. Diseases cause significant damage to grape cultures, making their integrated control important to reduce the use of pesticides and, consequently, environmental and human contamination. The rustic species Vitis labrusca L. (Vitaceae), used in the preparation of juices and wines, is highly resistant to fungal diseases. We isolated leaf endophytic fungi of the Bordô and Concord cultivars (V. labrusca L.), which were ordered into 68 and 62 morpho-groups of the Bordô and Concord cultivars, respectively. We used scanning electron microscopy to confirm the presence of endophytes in the leaves. Endophytic diversity was analyzed based on sequencing the ITS1-5.8S-ITS2 region of rDNA, allowing the identification of fungi belonging to genera including Cochliobolus, Bipolaris, Fusarium, Alternaria, Diaporthe, Phoma and Phomopsis. Phylogenetic analysis confirmed the identity of the endophytes. The biotechnological potential of endophytes was tested in vitro for the control of pathogenic fungi of grapevines including Alternaria sp., Sphaceloma sp. and Glomerella sp. Inhibition percentages above 50 % as demonstrated by some isolates demonstrate their potential for biological control.

Keywords

Endophytes Grapevine Biological control Sequencing of rDNA Phylogenetic analysis 

References

  1. Albrectsen BR, Björkén L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28CrossRefGoogle Scholar
  2. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  3. Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical Forest Community Ecology. Wiley-Blackwell, HobokenGoogle Scholar
  4. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedGoogle Scholar
  5. Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206CrossRefPubMedGoogle Scholar
  6. Azevedo JL, Maccheroni JW, Pereira JO, Araújo WL (2000) Endophytic microrganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  7. Badalyan SM, Innocenti G, Garibyan NG (2002) Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr 41:200–225Google Scholar
  8. Bernardi-Wenzel J, Garcia A, Azevedo JL, Pamphile JA (2013) Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria. Genet Mol Res 12(4):5072–5084CrossRefPubMedGoogle Scholar
  9. Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197CrossRefPubMedGoogle Scholar
  10. Burruano S, Alfonzo A, Lo Piccolo S, Conigliaro G, Mondello V, Torta L, Moretti M, Assante G (2008) Interaction between Acremonium byssoides and Plasmopara viticola in Vitis vinifera. Phytopathol Mediterr 47:122–131Google Scholar
  11. Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246CrossRefGoogle Scholar
  12. Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol Mediterr 48:73–83Google Scholar
  13. Eichhorn KW, Lorenz DH (1984) Phaenologische entwicklungsstadien der rebe. EPPO 14:295–298CrossRefGoogle Scholar
  14. Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206CrossRefGoogle Scholar
  15. Faostat—Food and Agriculture Organization of the United Nations (2012) Available from: http://faostat.fao.org/site/339/default.aspx. Accessed: 20 july 2014
  16. Ferreira DF (2008) SISVAR: um programa para análise e ensino de estatística. Rev Científica Symp 6:36–41Google Scholar
  17. Garcia A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148CrossRefPubMedGoogle Scholar
  18. Gonzáles V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42CrossRefGoogle Scholar
  19. Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infestes by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390CrossRefGoogle Scholar
  20. Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363CrossRefPubMedGoogle Scholar
  21. Lima TEF (2010) Micobiota endofitica de Vitis labrusca L. CV Isabel no vale do Siriji, Pernambuco, Brasil. Thesis, Universidade Federal de PernambucoGoogle Scholar
  22. Magnani M, Fernandes T, Prete CEC, Homechim M, Ono EYS, Vilas-Boas LA, Sartori D, Furlaneto MC, Fungaro MHP (2005) Molecular identification of Aspergillus spp. isolated from coffee beans. Sci Agric 62:45–49CrossRefGoogle Scholar
  23. Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983CrossRefGoogle Scholar
  24. Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola coplex. Sydowia 52:46–48Google Scholar
  25. Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, Dambrosio M, Sanità Di Toppi L, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96:689–698CrossRefPubMedGoogle Scholar
  26. Orlandelli RC, Alberto RN, Rubin Filho CJ, Pamphile JA (2012) Diversity of endophytic fungal community associated with Piper hispidum Sw. (Piperaceae) leaves. Genet Mol Res 11:1575–1585CrossRefPubMedGoogle Scholar
  27. Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays.L). World J Microbiol Biotechnol 18:391–396CrossRefGoogle Scholar
  28. Pamphile JA, Gai CS, Pileggi M, Rocha CLMSC, Pileggi SAV (2008a) Plant-microbe interactions between host and endophytes observed by scanning electron microscopy (SEM). In: Sorvari S, Pirttilä AM (eds) Prospects and Applications for Plant-Associated Microbes. A Laboratory Manual, part A: Bacteria. BBI (BioBien Innovations), Finland, pp 184–189Google Scholar
  29. Pamphile JA, Pileggi M, Gai CS, Rocha CLMSC, Pileggi SAV (2008b) Scanning electron microscopy (SEM). In: Sorvari S, Pirttilä AM (eds) Prospects and Applications for Plant-Associated Microbes. A Laboratory Manual, part A: Bacteria. BBI (BioBien Innovations), Finland, pp 9–13Google Scholar
  30. Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in Grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317CrossRefPubMedPubMedCentralGoogle Scholar
  31. Petrini O (1991) Fungal endophyte of tree leaves. In: Andrews J, Hirano SS (eds) Microbial Ecology of Leaves. Spring, New York, pp 179–197CrossRefGoogle Scholar
  32. Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96CrossRefPubMedGoogle Scholar
  33. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20CrossRefGoogle Scholar
  34. Rehman S, Mir T, Kour A, Qazi PH, Sultan P, Shawl AS (2011) In vitro antimicrobial studies of Nodulisporium specie: an endophytic fungus. J Yeast Fungal Res 2:53–58Google Scholar
  35. Reyes Chilpa R, Quiroz Vásquez RI, Jiménez Estrada M, Navarro-Ocaña A, Cassini Hernández J (1997) Antifungal activity of selected plant secondary metabolites against Coriolus versicolor. J Trop Forest Prod 3:110–113Google Scholar
  36. Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, Pamphile JA (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522CrossRefPubMedGoogle Scholar
  37. Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZA, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of (Mexican yew). Fungal Divers 47:65–74CrossRefGoogle Scholar
  38. Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araújo IS, Mattos CRR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84CrossRefGoogle Scholar
  39. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114CrossRefPubMedGoogle Scholar
  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  41. Sandhu SS, Aharwal RP, Kumar S (2014) Isolation and antibacterial property of endophytic fungi isolated from Indian medicinal plant Calotropis procera (Linn.). World J Pharm Pharm Sci 3:678–691Google Scholar
  42. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefPubMedGoogle Scholar
  43. Smith D, Onions AHS (1983) The preservation and maintenance of living fungi. Page, NorwickGoogle Scholar
  44. Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 93:278–287CrossRefPubMedGoogle Scholar
  45. Sousa JSI (1996) Uvas para o Brasil, 2nd edn. FEALQ, PiracicabaGoogle Scholar
  46. Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial Endophytes. Dekker, New York, pp 3–30Google Scholar
  47. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefPubMedGoogle Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  50. Vaz ABM, Mota RC, Bomfim MRQ, Vieira MLA, Zani CL, Rosa CA, Rosa LH (2009) Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 55:1381–1391CrossRefPubMedGoogle Scholar
  51. Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  52. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR Protocols. A Guide to Methods and Applications. Academic, New York, pp 315–322Google Scholar
  53. Živković S, Stojanović S, Ivanović Ž, Gavrilović V, Popović T, Balaž J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci 62:611–623CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2015

Authors and Affiliations

  • Aretusa Cristina Felber
    • 1
  • Ravely Casarotti Orlandelli
    • 1
  • Sandro Augusto Rhoden
    • 2
  • Adriana Garcia
    • 1
  • Alessandra Tenório Costa
    • 1
  • João Lúcio Azevedo
    • 3
  • João Alencar Pamphile
    • 1
  1. 1.Department of Cell Biology and GeneticsUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Câmpus de São Francisco do SulFederal Institute Catarinense (FIC)São Francisco do SulBrazil
  3. 3.College of Agriculture “Luiz de Queiroz” (ESALQ)Universidade de São PauloPiracicabaBrazil

Personalised recommendations