Annals of Microbiology

, Volume 66, Issue 1, pp 43–60 | Cite as

Microbial communities and primary succession in high altitude mountain environments

  • Sonia Ciccazzo
  • Alfonso Esposito
  • Luigimaria Borruso
  • Lorenzo BrusettiEmail author
Review Article


In high mountain environments, microbial communities are key players of soil formation and pioneer plant colonization and growth. In the last 10 years, many researches have been carried out to highlight their contribution. Bacteria, fungi, archaea, and algae are normal inhabitants of the most common habitats of high altitude mountains, such as glacier surfaces, rock wall surfaces, boulders, glacier waters, streams, and mineral soils. Here, microbial communities are the first colonizers, acting as keystone players in elemental transformation, carbon and nitrogen fixation, and promoting the mineral soil fertility and pioneer plant growth. Especially in high mountain environments, these processes are fundamental to assessing pedogenetic processes in order to better understand the consequences of rapid glacier melting and climate change. This review highlights the most important researches on the field, with a particular view on mountain environments, from glaciers to pioneer plant growth.


Microbial community Rhizosphere Soil formation Glacier Moraine Pioneer plants Alps 



This review was supported by the Free University of Bozen/Bolzano internal funds TN5026 “Effects of climate change on high-altitude ecosystems” (CUP n. I41J10000960005). Partial funds came from the Dr. Erich-Ritter and the Dr. Herzog-Sellenberg Foundation within the Stifterverband für die Deutsche Wissenschaft, project “EMERGE: Retreating glaciers and emerging ecosystems in the Southern Alps” (CUP n. I41J11000490007). The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arróniz-Crespo M, Pérez-Ortega S, De los Ríos A, Allan Green TG, Ochoa Hueso R, Casermeiro MA, de la Cruz MT, Pintado A, Palacios D, Rozzi R, Tysklind N, Sancho LG (2014) Bryophyte-Cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLOS One 9:e96081PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bardgett R, Walker L (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559CrossRefGoogle Scholar
  3. Bardgett R, Mawdsley J, Edwards S, Hobbs P, Rodwell J, Davies W (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660CrossRefGoogle Scholar
  4. Bardgett RD, Richter A, Bol R, Garnett MH, Baumler R, Xu XL, Lopez-Capel E, Manning DAC, Hobbs PJ, Hartley IR, Wanek W (2007) Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol Lett 5:487–490CrossRefGoogle Scholar
  5. Barquin J, Scarsbrook M (2008) Management and conservation strategies for cold water springs. Aquat Conserv Mar Freshw Ecosys 18:580–591CrossRefGoogle Scholar
  6. Becklin KM, Hertweck KL, Jumpponen A (2012) Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb Ecol 63:682–693PubMedCrossRefGoogle Scholar
  7. Bengtson P, Bengtsson G (2005) Bacterial immobilization and remineralization of N at different growth rates and N concentrations. FEMS Microbiol Ecol 54:13–19PubMedCrossRefGoogle Scholar
  8. Benson DR, Silvester WB (1993) Biology of Frankia strains actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedCentralPubMedGoogle Scholar
  9. Blaine McCleskey R, Clor L, Lownstern J, Evans W, Nordstrom D, Heasler H, Huebner M (2012) Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon rivers, Yellowstone National Park. Appl Geochem 27:2370–2381CrossRefGoogle Scholar
  10. Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui L, Solheim B, Turicchia S, Marasco R, Hirnichs K, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high arctic desert. Environ Microbiol 12:293–303PubMedCrossRefGoogle Scholar
  11. Bowers RM, McCubbin IA, Haller AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49CrossRefGoogle Scholar
  12. Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369PubMedCrossRefGoogle Scholar
  13. Brankatschk R, Towe S, Kleineidam K, Schloter M, Zeyer J (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 6:1025–1037CrossRefGoogle Scholar
  14. Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497PubMedCrossRefGoogle Scholar
  15. Brunner I, Plötze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 9:266–279PubMedCrossRefGoogle Scholar
  16. Brunner I, Goren A, Schlumpf A (2014) Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources. Environ Res Lett 9:025002CrossRefGoogle Scholar
  17. Brusetti L, Glad T, Borin S, Myren P, Rizzi A, Johnsen PJ, Carter P, Daffonchio D, Nielsen KM (2008) Low prevalence of blaTEM genes in Arctic environments and agricultural soil and rhizosphere. Microb Ecol Health Dis 20:27–36CrossRefGoogle Scholar
  18. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: Contrasting elevational patterns of bacteria and plant diversity. Proc Natl Acad Sci U S A 105:11453–11457CrossRefGoogle Scholar
  19. Budel B, Weber B, Kuhl M, Pfanz H, Sultemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268CrossRefGoogle Scholar
  20. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  21. Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps—sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Hydrobiologia 562:59–96CrossRefGoogle Scholar
  22. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525PubMedCrossRefGoogle Scholar
  23. Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental-regulation of nitrogen-fixation in a high arctic lowland ecosystem. Can J Bot 69:2744–2755CrossRefGoogle Scholar
  24. Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay Alaska. Ecol Monog 64:149–175CrossRefGoogle Scholar
  25. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  26. Chuvochina MS, Marie D, Chevaillier S, Petit JR, Normand P, Alekhina IA, Bulat SA (2011) Community variability of bacteria in alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential. Microbes Environ 26:237–247PubMedCrossRefGoogle Scholar
  27. Chuvochina MS, Alekhina IA, Normand P, Petit JR, Bulat SA (2012) Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes. Microbiology 80:125–131CrossRefGoogle Scholar
  28. Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014) Safe-sites effects on rhizosphere bacterial communities in a high-altitude alpine environment. BioMed Res Int ID:480170Google Scholar
  29. Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014b) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springer Plus 3:391PubMedCentralPubMedCrossRefGoogle Scholar
  30. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  31. Davey MC, Clarke KJ (1991) The spatial distribution of microalgae on fellfield soils. Antarctic Sci 3:257–263CrossRefGoogle Scholar
  32. De Garcia V, Brizzio S, van Broock MR (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550PubMedCrossRefGoogle Scholar
  33. De los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environ Microbiol 4:231–237CrossRefGoogle Scholar
  34. Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612PubMedCrossRefGoogle Scholar
  35. Delvasto P, Valverde A, Ballester A, Igual JM, Munoz JA, Gonzalez F, Blázquez ML, Garcia C (2006) Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol Biochem 38:2645–2654CrossRefGoogle Scholar
  36. Deslippe JR, Egger KN (2006) Molecular diversity of nifH genes from bacteria associated with High Arctic dwarf shrubs. Microb Ecol 51:516–525PubMedCrossRefGoogle Scholar
  37. Dieser M, Nocker A, Priscu J, Foreman CM (2010) Viable microbes in ice: Application of molecular assays to McMurdo Dry Valley lake ice communities. Antarct Sci 22:470–476CrossRefGoogle Scholar
  38. Dorn RI (2007) Rock varnish. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. Blackwell, London, pp 246–297CrossRefGoogle Scholar
  39. Duarte CM, Dachs J, Llabres M, Alonso-Laita P, Gasol JM, Tovar-Sanchez A, Sañudo-Wilhelmy SA, Agustí S (2006) Aerosol inputs enhance new production in the subtropical northeast Atlantic. J Geophys Res-Biogeosc 111:1–8CrossRefGoogle Scholar
  40. Duc L, Neuenschwander S, Rehrauer H, Wagner U, Sobek J, Schlapbach R, Zeyer J (2009a) Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield. Environ Microbiol 11:2179–2189PubMedCrossRefGoogle Scholar
  41. Duc L, Noll M, Meier BE, Burgmann H, Zeyer J (2009b) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190PubMedCrossRefGoogle Scholar
  42. Edwards IP, Bürgmann H, Miniaci C, Zeyer J (2006) Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) Heywood and adjacent bare soil along an alpine chronosequence. Microb Ecol 52:679–692PubMedCrossRefGoogle Scholar
  43. Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ, Irvine-Fynn TDL, Rassner SME, Sattler B (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 8:035003CrossRefGoogle Scholar
  44. Esposito A, Ciccazzo S, Borruso L, Zerbe S, Daffonchio D, Brusetti L (2013) A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments. Curr Microbiol 67:472–479PubMedCrossRefGoogle Scholar
  45. Esposito A, Ahmed E, Ciccazzo S, Sikorski J, Overmann J, Holmström SJM, Brusetti L (2015) Comparison of rock varnish bacterial communities with surrounding non-varnished rock surfaces: Taxon-specific analysis and morphological description. Microb Ecol. doi: 10.1007/s00248-015-0617-4 PubMedGoogle Scholar
  46. Felip M, Camarero L, Catalan J (1999) Temporal changes of microbial assemblages in the ice and snow cover of a high mountain lake. Limnol Oceanogr 44:973–987CrossRefGoogle Scholar
  47. Franks F (1994) Protein destabilization at low temperatures. Adv Protein Chem 46:105–139CrossRefGoogle Scholar
  48. Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009) Soil CO2 flux and photoautotrophic community composition in high elevation, ‘barren’ soils. Environ Microbiol 11:674–686PubMedCrossRefGoogle Scholar
  49. Frey B, Rieder SR, Brunner I, Ploetze M, Koetzsch S, Lapanje A, Brandl H, Furrer G (2010) Weathering associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 76:4788–4796PubMedCentralPubMedCrossRefGoogle Scholar
  50. Frey B, Bühler L, Schmutz S, Zumsteg A, Furrer G (2013) Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ Res Lett 8:015033CrossRefGoogle Scholar
  51. Fritzsheridan RP (1988) Physiological ecology of nitrogen-fixing blue-green-algal crusts in the upper-subalpine life zone. J Phycol 24:302–309Google Scholar
  52. Fujii M, Takano Y, Kojima H, Hoshino T, Tanaka R, Fukui M (2010) Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microb Ecol 59:466–475PubMedCentralPubMedCrossRefGoogle Scholar
  53. Ganzert L, Lipski A, Hubberten HW, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island South Shetland Archipelago Antarctica. FEMS Microbiol Ecol 76:476–491PubMedCrossRefGoogle Scholar
  54. Garland JL, Cook KL, Adams JL, Kerkhof L (2001) Culturability as an indicator of succession in microbial communities. Microb Ecol 42:150–158PubMedGoogle Scholar
  55. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  56. Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface. Ann Rev Microbiol 63:431–450CrossRefGoogle Scholar
  57. Gordon DA, Priscu J, Giovannoni S (2000) Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb Ecol 39:197–202PubMedGoogle Scholar
  58. Grime JP (2001) Plant strategies vegetation processes and ecosystem properties. Wiley Blackwell London EdGoogle Scholar
  59. Gruber S, Peter M, Hoelzle M, Woodhatch I, Haeberli W (2003) Surface temperatures in steep Alpine rock faces—A strategy for regional-scale measurement and modeling. Proc 8th Int Conf Permafrost 1:325–330Google Scholar
  60. Hågvar S, Ohlson M (2013) Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci Rep 3:2820PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412PubMedCentralPubMedCrossRefGoogle Scholar
  62. Hammerli A, Waldhuber S, Miniaci C, Zeyer J, Bunge M (2007) Local expansion and selection of soil bacteria in a glacier forefield. Eur J Soil Sci 58:1437–1445CrossRefGoogle Scholar
  63. Hayat R, Safdar Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  64. Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73:95–109PubMedGoogle Scholar
  65. Helmann JD (2014) Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. J Biol Chem 289:28112–28120PubMedCentralPubMedCrossRefGoogle Scholar
  66. Hervàs A, Casamayor EO (2009) High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area. FEMS Microbiol Ecol 67:219–228PubMedCrossRefGoogle Scholar
  67. Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north-west Svalbard. J Ecol 91:651–663CrossRefGoogle Scholar
  68. Hofmann K, Reitschuler C, Illmer P (2013) Aerobic and anaerobic microbial activities in the foreland of a receding glacier. Soil Biol Biochem 57:418–426CrossRefGoogle Scholar
  69. Hood E, Williams MW, McKnight DM (2005) Sources of Dissolved Organic Matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255CrossRefGoogle Scholar
  70. Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM (2015) Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci 8:91–96CrossRefGoogle Scholar
  71. Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428CrossRefGoogle Scholar
  72. Judd KE, Byron CC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–2079PubMedCrossRefGoogle Scholar
  73. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578CrossRefGoogle Scholar
  74. Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, U.S.A.) in relation to time since deglaciation. Mycorrhiza 12:43–49PubMedCrossRefGoogle Scholar
  75. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedCrossRefGoogle Scholar
  76. Kaczmarek L, Zawierucha K, Smykla J, Michalczyk L (2012) Tardigrada of the Revdalen (Spitsbergen) with the descriptions of two new species: Bryodelphax parvuspolaris (Heterotardigrada) and Isohypsibius coulsoni (Eutardigrada). Polar Biol 35:1013–1026CrossRefGoogle Scholar
  77. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407PubMedCrossRefGoogle Scholar
  78. Kaštovská K, Stibal M, Sabacka M, Cerna B, Santruckova H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287CrossRefGoogle Scholar
  79. Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 94:492–496PubMedCrossRefGoogle Scholar
  80. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  81. Kennedy IR, Pereggerk LL, Wood C, Deaker R, Glichrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crop: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79CrossRefGoogle Scholar
  82. Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiontic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244CrossRefGoogle Scholar
  83. Knelman JE, Legg TM, O’Neill SP, Washenberger CL, Gonzalez A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180CrossRefGoogle Scholar
  84. Körner C (1999) Alpine plant life. Springer-Verlag, BerlinCrossRefGoogle Scholar
  85. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181CrossRefGoogle Scholar
  86. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863PubMedCentralPubMedCrossRefGoogle Scholar
  87. Lapanje A, Wimmersberger C, Furrer G, Brunner I, Frey B (2012) Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma glacier (Central Alps) deglaciated granite sand. Microbial Ecol 6:865–882CrossRefGoogle Scholar
  88. Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure in glacier forefields on calcareous and siliceous bedrock. Eur J Soil Sci 60:860–870CrossRefGoogle Scholar
  89. Lee YM, Kim SY, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 49:355–362PubMedCrossRefGoogle Scholar
  90. Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427PubMedCrossRefGoogle Scholar
  91. Llorens-Marès T, Auguet JC, Casamayor EO (2012) Winter to spring changes in the slush bacterial community composition of a high-mountain lake (Lake Redon, Pyrenees). Environ Microbiol Rep 4:50–56PubMedCrossRefGoogle Scholar
  92. Lutz S, Anesio AM, Jorge Villar SE, Benning LG (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 89:402–414PubMedCrossRefGoogle Scholar
  93. Lutz S, Anesio AM, Edwards A, Benning LG (2015) Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 6:307PubMedCentralPubMedGoogle Scholar
  94. Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271CrossRefGoogle Scholar
  95. Mapelli F, Marasco R, Rizzi A, Baldi F, Ventura S, Daffonchio D, Borin S (2011) Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines. Microb Ecol 61:438–447PubMedCrossRefGoogle Scholar
  96. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMedCrossRefGoogle Scholar
  97. Marnocha CL, Dixon JC (2014) Bacterially facilitated rock-coating formation as a component of the geochemical budget in cold climates: An example from Kärkevagge, Swedish Lapland. Geomorphology 218:45–51CrossRefGoogle Scholar
  98. Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23:205–211CrossRefGoogle Scholar
  99. Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, CambridgeGoogle Scholar
  100. Mavris C, Egli M, Plotze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine Switzerland). Geoderma 155:359–371CrossRefGoogle Scholar
  101. McFadden LD, Eppes MC, Gillespie AR, Hallet B (2005) Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Geol Soc Am Bull 117:161–173CrossRefGoogle Scholar
  102. Meola M, Lazzaro A, Zeyer J (2014) Diversity, resistance and resilience of the bacterial communities at two alpine glacier forefields after a reciprocal soil transplantation. Environ Microbiol 16:1918–1934PubMedCrossRefGoogle Scholar
  103. Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383CrossRefGoogle Scholar
  104. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen nov sp nov a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346 Microbiol Ecol 67:219–228Google Scholar
  105. Miniaci C, Bunge M, Duc L, Edwards I, Bürgmann H, Zeyer J (2007) Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fertil Soil 44:289–297CrossRefGoogle Scholar
  106. Miteva VI, Brenchely JE (2005) Detection and Isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedCentralPubMedCrossRefGoogle Scholar
  107. Miteva VI, Sheridan PP, Brenchely JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedCentralPubMedCrossRefGoogle Scholar
  108. Müller T, Leya T, Fuhr G (2001) Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arct Antarct Alp Res 123:42–51CrossRefGoogle Scholar
  109. Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90CrossRefGoogle Scholar
  110. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated recently deglaciated soil. Microb Ecol 53:110–122PubMedCrossRefGoogle Scholar
  111. Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347PubMedCrossRefGoogle Scholar
  112. Nicol GW, Tscherko D, Chang L, Hammesfahr U, Prosser JI (2006) Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Environ Microbiol 8:1382–1393PubMedCrossRefGoogle Scholar
  113. Odum EP (1963) Ecology. Holt Rinchart Winston Ed NYGoogle Scholar
  114. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270PubMedCrossRefGoogle Scholar
  115. Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246CrossRefGoogle Scholar
  116. Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:GB2CrossRefGoogle Scholar
  117. Pallavi KP, Gupta PC (2013) A psychrotolerant strain Kluyvera intermedia solubilizes inorganic phosphate at different carbon and nitrogen source. Bioscan 8:1197–1201Google Scholar
  118. Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460Google Scholar
  119. Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107PubMedCrossRefGoogle Scholar
  120. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nature Microbiol Rev 11:789–799CrossRefGoogle Scholar
  121. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139PubMedCrossRefGoogle Scholar
  122. Poly F, Ranjard L, Nazaret S, Gourbière F, Jocteur Monrozier L (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262PubMedCentralPubMedCrossRefGoogle Scholar
  123. Potter RM, Rossman GR (1977) Desert varnish: the importance of clay minerals. Science 196:1446–1448PubMedCrossRefGoogle Scholar
  124. Price PB (2000) A habitat for psychrophiles in deep antarctic ice. Proc Nat Acad Sci 97:1247–1251PubMedCentralPubMedCrossRefGoogle Scholar
  125. Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231PubMedCrossRefGoogle Scholar
  126. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490PubMedCentralPubMedCrossRefGoogle Scholar
  127. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and prospecting. ASM Press, Washington, pp 130–145CrossRefGoogle Scholar
  128. Psenner R, Sattler B (1998) Life at the freezing point. Science 280:2073–2074PubMedCrossRefGoogle Scholar
  129. Puri S, Hohle TH, O’Brian MR (2010) Control of bacterial iron homeostasis by manganese. Proc Nat Acad Sci 107:10691–10695PubMedCentralPubMedCrossRefGoogle Scholar
  130. Ragot S, Zeyer J, Zehnder L, Reusser E, Brandl H, Lazzaro A (2013) Bacterial community structures of an alpine apatite deposit. Geoderma 202–203:30–37CrossRefGoogle Scholar
  131. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268CrossRefGoogle Scholar
  132. Remias D, Wastian H, Lütz C, Leya T (2013) Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci 25:1–9CrossRefGoogle Scholar
  133. Rösch C, Bothe H (2005) Improved assessment of denitrifying N2-fixing and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035PubMedCentralPubMedCrossRefGoogle Scholar
  134. Roy J, Albert CH, Ibanez S, Saccone S, Zinger L, Choler P, Clément JC, Lavergne S, Geremia RA (2013) Microbes on the cliff: alpine cushion plants structure bacterial and fungal communities. Front Microbiol 4:64PubMedCentralPubMedGoogle Scholar
  135. Russell NJ, Harrisson P, Johnston IA, Jaenicke R, Zuber M, Franks F, Wynn-Williams D (1990) Cold adaptation of microorganisms. Philos Trans R Soc London B 326:595–611CrossRefGoogle Scholar
  136. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242CrossRefGoogle Scholar
  137. Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 8:591–596Google Scholar
  138. Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103CrossRefGoogle Scholar
  139. Schmidt SK, Lipson DA (2004) Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7CrossRefGoogle Scholar
  140. Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 meters above sea level) recently deglaciated soils. Proc R Soc B 275:2793–2802PubMedCentralPubMedCrossRefGoogle Scholar
  141. Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc R Soc B 278:702–708PubMedCentralPubMedCrossRefGoogle Scholar
  142. Schmidt SK, Naff CS, Lynch RC (2012) Fungal communities at the edge: ecological lesson from high alpine fungi. Fungal Ecol 5:443–452CrossRefGoogle Scholar
  143. Schütte UM, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 2:1258–1268CrossRefGoogle Scholar
  144. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains Japan analyzed by 16S rRNA gene sequencing and Real-Time PCR. Appl Environ Microbiol 71:123–130PubMedCentralPubMedCrossRefGoogle Scholar
  145. Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5:127–134PubMedCrossRefGoogle Scholar
  146. Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P (2014) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Ecol 118:61–71CrossRefGoogle Scholar
  147. Selvakumar G, Kundu S, Joshi P, Sehar N, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold tolerant plant growth promoting bacterium Pantoea dispersa 1A, isolated from a sub alpine soil in the North Western Indian Himalaya. World J Microb Biot 24:955–960CrossRefGoogle Scholar
  148. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Sehar N, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175PubMedCrossRefGoogle Scholar
  149. Selvakumar G, Joshi P, Sehar N, Mishra PK, Bisht JK, Gupta HS (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245CrossRefGoogle Scholar
  150. Selvakumar G, Joshi P, Sehar N, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microb Biot 25:131–136CrossRefGoogle Scholar
  151. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110CrossRefGoogle Scholar
  152. Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160PubMedCentralPubMedCrossRefGoogle Scholar
  153. Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95PubMedCrossRefGoogle Scholar
  154. Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 45:397–407CrossRefGoogle Scholar
  155. Sigler WV, Zeyer J (2004) Colony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunists. Microb Ecol 48:316–323PubMedCrossRefGoogle Scholar
  156. Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure activity and opportunistic growth dynamics. Microb Ecol 44:306–316PubMedCrossRefGoogle Scholar
  157. Simonet P, Navarro E, Rouvier C, Reddell P, Zimpfer J, Dommergues Y, Bardin R, Combarro P, Hamelin J, Domenach AM, Gourbiére F, Prin Y, Dawson JO, Normand P (1999) Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–533PubMedCrossRefGoogle Scholar
  158. Singer GA, Fasching C, Wilhelm L, Niggeman J, Steier P, Dittmar T, Battin TJ (2012) Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat Geosci 5:710–714CrossRefGoogle Scholar
  159. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393PubMedCrossRefGoogle Scholar
  160. Solheim B, Wiggen H, Røberg S, Spaink HP (2004) Associations between arctic cyanobacteria and mosses. Symbiosis 37:169–187Google Scholar
  161. Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462CrossRefGoogle Scholar
  162. Stibal M, Tranter M, Benning LG, Rehak J (2008a) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 8:2172–2178CrossRefGoogle Scholar
  163. Stibal M, Tranter M, Telling J, Benning LG (2008b) Speciation phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90:1–13CrossRefGoogle Scholar
  164. Strauss SL, Garcia-Pichel F, Day TA (2012) Microbial colonization of a recently exposed glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35:1459–1471CrossRefGoogle Scholar
  165. Styriakova I, Mockovciakova A, Styriak I, Kraus I, Uhlik P, Madejova J, Orolinova Z (2012) Bioleaching of clays and iron oxide coatings from quartz sands. Appl Clay Sci 61:1–7CrossRefGoogle Scholar
  166. Takeuchi N (2013) Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ Res Lett 8:035002CrossRefGoogle Scholar
  167. Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res 114:D17102CrossRefGoogle Scholar
  168. Thomas WH, Duval B (1995) Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic Alp Res 27:389–399CrossRefGoogle Scholar
  169. Tieber A, Lettner H, Bossew P, Hubmer A, Sattler B, Hofmann W (2009) Accumulation of anthropogenic radionuclides in cryoconites on Alpine glaciers. J Environ Radioact 100:590–598PubMedCrossRefGoogle Scholar
  170. Töwe S, Albert A, Kleineidam K, Brankatschk R, Dümig A, Welzl G, Munch JC, Zeyer J, Schloter M (2010) Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma Glacier forefield. Microb Ecol 60:762–770PubMedCrossRefGoogle Scholar
  171. Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696CrossRefGoogle Scholar
  172. Tscherko D, Hammesfahr U, Marx MC, Kandeler E (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol Biochem 36:1685–1698CrossRefGoogle Scholar
  173. Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340PubMedCrossRefGoogle Scholar
  174. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeila J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911CrossRefGoogle Scholar
  175. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45CrossRefGoogle Scholar
  176. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736CrossRefGoogle Scholar
  177. Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb Ecol 69:135–145PubMedCrossRefGoogle Scholar
  178. Welch SA, Ullman WJ (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees C. Geochim Cosmochim Acta 63:19–20Google Scholar
  179. Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419CrossRefGoogle Scholar
  180. Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Appl Environ Microbiol 65:374–380PubMedCentralPubMedGoogle Scholar
  181. Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K (2013) Microbial biodiversity in glacier-fed streams. ISME J 7:1651–1660PubMedCentralPubMedCrossRefGoogle Scholar
  182. Wong FKY, Lacap DC, Lau MCY, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739PubMedCentralPubMedCrossRefGoogle Scholar
  183. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451PubMedCrossRefGoogle Scholar
  184. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007b) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682PubMedCrossRefGoogle Scholar
  185. Yoshimura Y, Kohshima S, Takeuchi N, Seko K, Fujita K (2006) Snow algae in a Himalayan ice core: new environmental markers for ice-core analyses and their correlation with summer mass balance. Ann Glaciol 43:148–153CrossRefGoogle Scholar
  186. Zhang XF, Zhao L, Xu SJ Jr, Liu YZ, Liu HY, Cheng GD (2012) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J Appl Microbiol 114:1054–1065CrossRefGoogle Scholar
  187. Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high Artic, Svalbard. Arct Antarc Alp Res 34:293–299CrossRefGoogle Scholar
  188. Zumsteg A, Luster J, Göransson H, Smittenberg R, Brunner I, Bernasconi S, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564PubMedCrossRefGoogle Scholar
  189. Zumsteg A, Schmutz S, Frey B (2013) Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing. Environ Microbiol Rep 5:424–437PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2015

Authors and Affiliations

  • Sonia Ciccazzo
    • 1
  • Alfonso Esposito
    • 1
  • Luigimaria Borruso
    • 1
  • Lorenzo Brusetti
    • 1
    Email author
  1. 1.Faculty of Science and TechnologyFree University of Bozen/BolzanoBozen/BolzanoItaly

Personalised recommendations