Advertisement

Annals of Microbiology

, Volume 65, Issue 4, pp 2311–2321 | Cite as

Species diversity, spatial distribution, and virulence associated genes of culturable vibrios in a brackish coastal Mediterranean environment

  • Giorgia Matteucci
  • Serena Schippa
  • Gustavo Di Lallo
  • Luciana Migliore
  • Maria Cristina Thaller
Original Article

Abstract

The Vibrio genus is widespread in marine and brackish environments, and several species are human and animal pathogens of global importance. Vibrios adapt rapidly to many environmental stresses, so that brackish environments can be both a suitable niche and a possible reservoir for them. To test the occurrence of culturable vibrios and their possible correlation with environmental factors in a temperate brackish environment, a 1-year sampling study was performed in three brackish ponds located along the Central Thyrrenian coast in the Macchiatonda Nature Reserve (Santa Marinella, district of Rome, Italy). Molecular methods were used to detect Vibrio cholerae, V. parahaemolyticus, and V. vulnificus pathogenicity-associated genes among the Vibrio isolates. Out of 130 Vibrio isolates identified by sequencing a recA fragment, 70 harbored virulence-associated genes including ctx, ace, tcpA, tdh, trh, vvhA, vllY, and toxRS, so confirming the spread of virulence determinants across the environmental isolates. Ecological analysis showed that, although the water temperature is known to be a strong predictor of abundance and distribution of vibrios, its influence accounts for 27 % of the observed variance in the Macchiatonda samples, increasing to 40 % when combined with salinity.

Keywords

Vibrios Brackish environment Virulence-associated genes 

Notes

Acknowledgments

This work was supported by “Fondazione CARICIV (CAssa di Risparmio di CIVitavecchia)” 2009_research to MCT and LM, by commitment of the Comune di Santa Marinella (Rome, Italy). The authors are grateful to all the Macchiatonda Natural Reserve Rangers for their support for the samplings, and to Federica Tamburi for her help in handling figures.

References

  1. Austin B (2010) Vibrios as causal agents of zoonoses. Vet Microbiol 140:310–317. doi: 10.1016/j.vetmic.2009.03.015 CrossRefPubMedGoogle Scholar
  2. Austin B, Austin D, Sutherland R, Thompson F, Swings J (2005) Pathogenicity of vibrios to rainbow trout (Oncorhynchus mykiss, Walbaum) and Artemia nauplii. Environ Microbiol 7:1488–1495. doi: 10.1111/j.14622920.2005.00847.x CrossRefPubMedGoogle Scholar
  3. Baffone W, Tarsi R, Pane L, Campana R, Repetto B, Mariottini GL, Pruzzo C (2006) Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ Microbiol 8:1299–1305. doi: 10.1111/j.1462-2920.2006.01011.x CrossRefPubMedGoogle Scholar
  4. Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J (2012) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3:73–77. doi: 10.1038/nclimate1628 CrossRefGoogle Scholar
  5. Bier N, Bechlars S, Diescher S, Klein F, Hauk G, Duty O, Strauch E, Dieckmann R (2013) Genotypic diversity and virulence characteristics of clinical and environmental Vibrio vulnificus isolates from the Baltic Sea region. Appl Environ Microbiol 79:3570–3581. doi: 10.1128/AEM. 00477-13 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Böer S, Heinemeyer E, Luden K, Erler R, Gerdts G, Janssen F, Brennholt N (2013) Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German North Sea. Microb Ecol 65:1052–1067. doi: 10.1007/s00248-013-0221-4 CrossRefPubMedGoogle Scholar
  7. Boyd EF, Moyer KE, Shi L, Waldor MK (2000) Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513. doi: 10.1128/IAI.68.3.1507-1513.2000 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Caburlotto G, Bianchi F, Gennari M, Ghidini V, Socal G, Aubry FB, Bastianini M, Tafi M, Lleo MM (2012) Integrated evaluation of environmental parameters influencing Vibrio occurrence in the coastal Northern Adriatic Sea (Italy) facing the Venetian lagoon. Microb Ecol 63:20–31. doi: 10.1007/s00248-011-9920-x CrossRefPubMedGoogle Scholar
  9. Cavallo RA, Acquaviva MI, Alabiso G, Milillo M (2012) Study of aquaculture pathogenic vibrios in the Mar Piccolo of Taranto (Ionian Sea, Italy). Biol Mar Mediterr 19:154–155Google Scholar
  10. Ceccarelli D, Hasan NA, Huq A, Colwell RR (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 3:97. doi: 10.3389/fcimb.2013.00097 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chang TM, Chuang YC, Su JH, Chang MC (1997) Cloning and sequence analysis of a novel hemolysin gene (vllY) from Vibrio vulnificus. Appl Environ Microbiol 63:3851–3857PubMedCentralPubMedGoogle Scholar
  12. Codeço CT, Coelho FC (2006) Trends in cholera epidemiology. PLoS Med 3(1):e42. doi: 10.1371/journal.pmed.0030042 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Colwell RR, Kaper J, Joseph SW (1977) Vibrio cholerae, Vibrio parahaemolyticus and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396CrossRefPubMedGoogle Scholar
  14. Covazzi-Harriague A, Brino MD, Zampini M, Albertelli G, Pruzzo C, Misic C (2008) Vibrios in association with sedimentary crustaceans in three beaches of the Northern Adriatic Sea (Italy). Mar Poll Bull 56:574–579. doi: 10.1016/j.marpolbul.2007.12.011 CrossRefGoogle Scholar
  15. Di Rita VJ, Mekalanos JJ (1991) Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64:29–37CrossRefGoogle Scholar
  16. Diéguez AL, Beaz-Hidalgo R, Cleenwerck I, Balboa S, De Vos P, Romalde JL (2011) Vibrio atlanticus sp. nov. and Vibrio artabrorum sp. nov., isolated from the clams Ruditapes philippinarum and Ruditapes decussatus. Int J Syst Evol Microbiol 61:2406–2411. doi: 10.1099/ijs. 0.025320-0 CrossRefPubMedGoogle Scholar
  17. Eiler A, Gonzalez-Rey C, Allen S, Bertilsson S (2007) Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiol Ecol 60:411–418. doi: 10.1111/j.1574-6941.2007.00303.x CrossRefPubMedGoogle Scholar
  18. Eiler A, Johansson M, Bertilsson S (2006) Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol 72:6004–6011. doi: 10.1128/AEM. 00917-06 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus Vibrio. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 494–546Google Scholar
  20. Figge MJ, Robertson LA, Ast JC, Dunlap PV (2011) Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M. W. Beijerinck. FEMS Microbiol Ecol 78:463–472. doi: 10.1111/j.1574-6941.2011.01177.x CrossRefPubMedGoogle Scholar
  21. Gennari M, Ghidini V, Caburlotto G, Lleo MM (2012) Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563–573. doi: 10.1111/j.1574-6941.2012.01427.x CrossRefPubMedGoogle Scholar
  22. Gomez-Gil B, Roque A, Chimetto L, Moreira AP, Lang E, Thompson FL (2012) Vibrio alfacsensis sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol 62:2955–2961. doi: 10.1099/ijs. 0.033191-0 CrossRefPubMedGoogle Scholar
  23. Guerinot ML, West PA, Lee JV, Colwell RR (1982) Vibrio diazotrophicus sp. nov, a marine nitrogen-fixing bacterium. Int J Syst Bacteriol 32:350–357CrossRefGoogle Scholar
  24. Haley BJ, Kokashvili T, Tskshvediani A, Janelidze N, Mitaishvili N, Grim CJ, Constantin de Magny G, Chen AJ, Taviani E, Eliashvili T, Tediashvili M, Whitehouse CA, Colwell RR, Huq A (2014) Molecular diversity and predictability of Vibrio parahaemolyticus along the Georgian coastal zone of the Black Sea. Front Microbiol 5:45. doi: 10.3389/fmicb.2014.00045 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hoshino K, Yamasaki S, Mukhopadhyay AK, Chakraborty S, Basu A, Bhattacharya SK, Nair GB, Shimada T, Takeda Y (1998) Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol 20:201–207. doi: 10.1111/j.1574- 695X.1998.tb01128.x CrossRefPubMedGoogle Scholar
  26. Hughes SN, Greig DJ, Miller WA, Byrne BA, Gulland FM, Harvey JT (2013) Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health. Microb Ecol 65:982–994. doi: 10.1007/s00248-013-0188-1 CrossRefPubMedGoogle Scholar
  27. Ki JS, Zhang R, Zhang W, Huang YL, Qian PY (2009) Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine Vibrio species. Microb Ecol 58:679–691. doi: 10.1007/s00248-009-9519-7 CrossRefPubMedGoogle Scholar
  28. Kirkup BC Jr, Chang L, Chang S, Gevers D, Polz MF (2010) Vibrio chromosomes share common history. BMC Microbiol 10:137. doi: 10.1186/1471-2180-10-137 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Klein SL, Gutierrez West CK, Mejia DM, Lovell CR (2014) Genes similar to the Vibrio parahaemolyticus virulence related genes tdh, tlh, and vscC2 occur in other Vibrionaceae species isolated from a pristine estuary. Appl Environ Microbiol 80:595–602. doi: 10.1128/AEM.02895 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lee SE, Shin SH, Kim SY, Kim YR, Shin DH, Chung SS, Lee ZH, Lee JY, Jeong KC, Choi SH, Rhee JH (2000) Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA. J Bacteriol 182:3405–3415PubMedCentralCrossRefPubMedGoogle Scholar
  31. Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M (1993) Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol 175:3844–3855PubMedCentralPubMedGoogle Scholar
  32. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, Colwell RR (2000) Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A 97:1438–1443. doi: 10.1073/pnas.97.4.1438 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Macián MC, Arias CR, Aznar R, Garay E, Pujalte MJ (2010) Identification of Vibrio spp. (other than V. vulnificus) recovered on CPC agar from marine natural samples. Int Microbiol 3:51–53Google Scholar
  34. Martinez-Urtaza J, Blanco-Abad V, Rodriguez-Castro A, Ansede-Bermejo J, Miranda A, Rodriguez-Alvarez MX (2012) Ecological determinants of the occurrence and dynamics of Vibrio parahaemolyticus in offshore areas. ISME J 6:994–1006. doi: 10.1038/ismej.2011.156 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Maugeri TL, Caccamo D, Gugliandolo C (2000) Potentially pathogenic vibrios in brackish waters and mussels. J Appl Microbiol 89:261–266. doi: 10.1046/j.1365-2672.2000.01096.x CrossRefPubMedGoogle Scholar
  36. Maugeri TL, Carbone M, Fera MT, Irrera GP, Gugliandolo C (2004) Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J Appl Microbiol 97:354–361. doi: 10.1111/j.1365-2672.2004.02303.x CrossRefPubMedGoogle Scholar
  37. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827CrossRefPubMedGoogle Scholar
  38. Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, Verner-Jeffreys D, Hartnell R, Oliver JD, Gibas CJ (2012) Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 7(5):e37553. doi: 10.1371/journal.pone.0037553 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Narracci M, Acquaviva MI, Cavallo RA (2014) Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. Environ Sci Pollut Res Int 21:2378–2385. doi: 10.1007/s11356-013- 2049–3 CrossRefPubMedGoogle Scholar
  40. Nigro OD, Hou A, Vithanage G, Fujioka RS, Steward GF (2011) Temporal and spatial variability in culturable pathogenic Vibrio spp. in Lake Pontchartrain Louisiana following hurricanes Katrina and Rita. Appl Environ Microbiol 77:5384–5393. doi: 10.1128/AEM. 02509-10 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Oakey HJ, Levy N, Bourne DG, Cullen B, Thomas A (2003) The use of PCR to aid in the rapid identification of Vibrio harveyi isolates. J Appl Microbiol 95:1293–1303. doi: 10.1046/j.1365-2672.2003.02128.x CrossRefPubMedGoogle Scholar
  42. O’Shea YA, Boyd EF (2002) Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett 214:153–157Google Scholar
  43. Ottaviani D, Bacchiocchi I, Masini L, Carraturo A, Russo GL, Giammarioli M, Sbaraglia G (2001) Correlation between medium acidification and pathogenicity in environmental halophilic non-cholera vibrios. Lett Appl Microbiol 33:61–64. doi: 10.1046/j.1472- 765X.2001.00953.x CrossRefPubMedGoogle Scholar
  44. Pedersen K, Ceschia G, Larsen JL (1994) Ribotypes of Vibrio anguillarum O1 from Italy and Greece. Curr Microbiol 28:97–99. doi: 10.1007/BF01569054 CrossRefGoogle Scholar
  45. Preheim SP, Timberlake S, Polz MF (2011) Merging taxonomy with ecological population prediction in a case study of Vibrionaceae. Appl Environ Microbiol 77:7195–7206. doi: 10.1128/AEM. 00665-11 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Raguénès G, Christen R, Guezennec J, Pignet P, Barbier G (1997) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47:989–995. doi: 10.1099/00207713-47-4-989 CrossRefPubMedGoogle Scholar
  47. Randa MA, Polz MF, Lim E (2004) Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl Environ Microbiol 70:5469–5476. doi: 10.1128/AEM70.9.5469-5476.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Reich KA, Schoolnik GK (1994) The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae transmembrane transcriptional activator ToxR. J Bacteriol 176:3085–3088PubMedCentralPubMedGoogle Scholar
  49. Robert-Pillot A, Guenole A, Lesne J, Delesmont R, Fournier JM, Quilici ML (2004) Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two French coastal areas and from seafood imported into France. Int J Food Microbiol 91:319–325. doi: 10.1016/j.ijfoodmicro.2003.07.006 CrossRefPubMedGoogle Scholar
  50. Rollins DM, Colwell RR (1986) Viable but non culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538PubMedCentralPubMedGoogle Scholar
  51. Romalde JL, Dieguez AL, Lasa A, Balboa S (2014) New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 4:413. doi: 10.3389/fmicb.2013.00413 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Sechi LA, Dupré I, Deriu A, Fadda G, Zanetti S (2000) Distribution of Vibrio cholerae virulence genes among different Vibrio species isolated in Sardinia, Italy. J Appl Microbiol 88:475–481. doi: 10.1046/j.1365-2672.2000.00982.x CrossRefPubMedGoogle Scholar
  53. Senoh M, Miyoshi S, Okamoto K, Fouz B, Amaro C, Shinoda S (2005) The cytotoxin-hemolysin genes of human and eel pathogenic Vibrio vulnificus strains: comparison of nucleotide sequences and application to the genetic grouping. Microbiol Immunol 49:513–519CrossRefPubMedGoogle Scholar
  54. Takemura AF, Chien DM, Polz MF (2014) Associations and dynamics of Vibrionaceae in the environment from the genus to the population level. Front Microbiol 5:38. doi: 10.3389/fmicb.2014.00038 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Terai A, Baba K, Shirai H, Yoshida O, Takeda Y, Nishibuchi M (1991) Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among Vibrio species. J Bacteriol 173:5036–5046PubMedCentralPubMedGoogle Scholar
  56. Theethakaew C, Feil EJ, Castillo-Ramirez S, Aanensen DM, Suthienkul O, Neil DM et al (2013) Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis. Appl Environ Microbiol 79:2358–2370. doi: 10.1128/AEM.03067-12 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Thompson CC, Thompson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J (2004a) Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54:919–924. doi: 10.1099/ijs. 0.02963-0 CrossRefPubMedGoogle Scholar
  58. Thompson FL, Iida T, Swings J (2004b) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431. doi: 10.1128/MMBR. 68.3.403-431.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  59. Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J, Hoste B, Swings J (2003) Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759. doi: 10.1099/ijs. 0.02490-0 CrossRefPubMedGoogle Scholar
  60. Thongchankaew U, Mittraparp-Arthorn P, Sukhumungoon P, Tansila N, Nuidate T, Nishibuchi M, Vuddhakul V (2011) Occurrence of potentially pathogenic vibrios and related environmental factors in Songkhla Lake, Thailand. Can J Microbiol 57:867–873. doi: 10.1139/w11-084 CrossRefPubMedGoogle Scholar
  61. Turner JW, Good B, Cole D, Lipp EK (2009) Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092. doi: 10.1038/ismej.2009.50 CrossRefPubMedGoogle Scholar
  62. Turner JW, Malayil L, Guadagnoli D, Cole D, Lipp EK (2014) Detection of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae with respect to seasonal fluctuations in temperature and plankton abundance. Environ Microbiol 16:1019–1028. doi: 10.1111/1462- 2920.12246 CrossRefPubMedGoogle Scholar
  63. Urakawa H, Rivera ING (2006) Aquatic environment. In: Thompson FL, Austin B, Swings J (eds) The biology of Vibrios. ASM Press, Washington, pp. 175–189CrossRefGoogle Scholar
  64. Urdaci MC, Marchand M, Ageron E, Arcos JM, Sesma B, Grimont PA (1991) Vibrio navarrensis sp. nov., a species from sewage. Int J Syst Bacteriol 41:290–294. doi: 10.1099/00207713-41-2-290 CrossRefPubMedGoogle Scholar
  65. Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb Ecol 58:808–818. doi: 10.1007/s00248-009-9542-8 CrossRefPubMedGoogle Scholar
  66. Wang SY, Lauritz J, Jass J, Milton DL (2002) A ToxR Homolog from Vibrio anguillarum Serotype O1 regulates its own production, bile resistance, and biofilm formation. J Bacteriol 184:1630–1639. doi: 10.1128/JB.184.6.1630-1639.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Wong HC, Liu SH, Chen MY (2005) Virulence and stress susceptibility of clinical and environmental strains of Vibrio vulnificus isolated from samples from Taiwan and the United States. J Food Prot 68:2533–2540PubMedGoogle Scholar
  68. Yamamoto K, Wright AC, Kaper JB, Morris JG Jr (1990) The cytolysin gene of Vibrio vulnificus: sequence and relationship to the Vibrio cholerae El Tor hemolysin gene. Infect Immun 58:2706–2709PubMedCentralPubMedGoogle Scholar
  69. Yamazaki K, Esiobu N (2012) Environmental predictors of pathogenic vibrios in South Florida coastal waters. Open Epidemiol J 5:1–4CrossRefGoogle Scholar
  70. Yu RR, Di Rita VJ (2002) Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol Microbiol 43:119–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2015

Authors and Affiliations

  • Giorgia Matteucci
    • 1
  • Serena Schippa
    • 2
  • Gustavo Di Lallo
    • 1
  • Luciana Migliore
    • 1
  • Maria Cristina Thaller
    • 1
  1. 1.Biology DepartmentUniversity of Rome, Tor VergataRomeItaly
  2. 2.Department of Public Health and Infectious DiseasesUniversity of Rome La SapienzaRomeItaly

Personalised recommendations