Advertisement

Annals of Microbiology

, Volume 65, Issue 4, pp 1855–1863 | Cite as

Acetobacter thailandicus sp. nov., for a strain isolated in Thailand

  • Nittaya Pitiwittayakul
  • Pattaraporn Yukphan
  • Winai Chaipitakchonlatarn
  • Yuzo Yamada
  • Gunjana TheeragoolEmail author
Original Article

Abstract

A Gram-negative, rod-shaped, and non-motile bacterium, designated as isolate AD25T, was isolated from a flower of the blue trumpet vine (Thunbergia laurifolia) at Tong Pha Phum, Kanchanaburi, Thailand. Phylogenetic analyses of 16S rRNA gene, 16S-23S rRNA gene internal transcribed spacer (ITS) region, and groEL gene sequences showed that the isolate was quite remote and constituted a cluster independent from the type strains of other Acetobacter species. The isolate was closely related to Acetobacter cibinongensis, one of the closest relatives, with 98.3 % 16S rRNA gene sequence similarity. The DNA G -+- C content of the isolate was 51.4 mol%. The isolate grew intensely on 10 % ethanol with 1.5 % D-glucose in the presence of 0.3 % peptone and 0.3 % yeast extract, and grew weakly on 3.0 % D-glucose in the presence of 0.1 % ammonium sulfate as the sole source of nitrogen. The isolate produced only D-gluconic acid from D-glucose. Based on physiological, biochemical, and genotypic differences between the isolate and the type strains of the validly named species, it is proposed that the isolate be classified as a novel species of Acetobacter, for which the name Acetobacter thailandicus sp. nov. is introduced. The type strain is isolate AD25T (= BCC 15839T = NBRC 103583T).

Keywords

Acetic acid bacterium Acetobacter thailandicus sp. nov groEL gene sequences 16S rRNA gene sequences 16S-23S rRNA gene ITS sequences 

Notes

Acknowledgments

This work was supported financially by the Strategic Scholarship/Fellowships Research Network from the Office of the Higher Education Commission, Ministry of Education (Grant no. 82/2549). Sincere thanks are also due to Mr. Richard James Goldrick, Department of Foreign Languages, Kasetsart University for English editing of this manuscript. A part of this work was carried out through collaboration of the Core to Core Program supported by the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

Supplementary material

13213_2014_1024_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)
13213_2014_1024_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 22 kb)
13213_2014_1024_MOESM3_ESM.docx (22 kb)
ESM 3 (DOCX 22 kb)

References

  1. Asai T, Iizuka H, Komagata K (1964) The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126CrossRefGoogle Scholar
  2. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783PubMedCentralCrossRefPubMedGoogle Scholar
  3. Cleenwerck I, De Vos P (2008) Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125:2–14CrossRefPubMedGoogle Scholar
  4. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swing J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558PubMedGoogle Scholar
  5. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, De Vuyst L (2007) Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57:1647–1652CrossRefPubMedGoogle Scholar
  6. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P, De Vuyst L (2008) Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 58:2180–2185CrossRefPubMedGoogle Scholar
  7. Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60:2277–2283CrossRefPubMedGoogle Scholar
  8. De Ley J, Gillis M, Swings J (1984) In: Krieg NR, Holt JG (eds) Family VI. Acetobacteraceae, 1th Ed Bergey’s Manual of Systematic Bacteriology, Vol. 1. Williams and Wilkins Co, Baltimore, pp 267–278Google Scholar
  9. Devereux R, Wills SG (1995) Amplification of ribosomal RNA sequences. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Academic Publishers, Dordrecht, pp 3.3.1–3.3.2Google Scholar
  10. Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903CrossRefPubMedGoogle Scholar
  11. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791CrossRefGoogle Scholar
  13. González A, Mas A (2011) Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int J Food Microbiol 147:217–222CrossRefPubMedGoogle Scholar
  14. Gosselé J, Swings J, De Ley J (1980) A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acid by thin layer chromatography in culture media of acetic acid bacteria. Zbl Bakt Hyg I Abt Orig C 1(2):178–181Google Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Hucker GJ, Conn HJ (1923) Method of gram staining. Tech Bull NY St Agric Exp Stn 93:3–37Google Scholar
  17. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2012) Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. J Gen Appl Microbiol 58:235–243CrossRefPubMedGoogle Scholar
  18. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2013) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 149. Int J Syst Evol Microbiol 63:1–5CrossRefGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  20. Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P, Nakagawa Y, Yamada Y (2008) Identification of Acetobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann Microbiol 58:319–324Google Scholar
  21. Li L, Wieme A, Spitaels F, Balzarini T, Nunes OC, Manaia CM, Van Landschoot A, De Vuyst L, Cleenwerck I, Vandamme P (2014) Acetobacter sicerae sp. nov., isolated from cider and kefir and identification of Acetobacter species by dnaK, groEL and rpoB sequence analysis. Int J Syst Evol Microbiol 64:2407–2415CrossRefPubMedGoogle Scholar
  22. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg, 1996) comb. nov., Acetobacter lovaniensis (Frateur, 1950) comb. nov., and Acetobacter estunensis (Carr, 1958) comb. nov. J Gen Appl Microbiol 46:147–165CrossRefPubMedGoogle Scholar
  23. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001a) Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation List no. 79. Int J Syst Evol Microbiol 51:263–265CrossRefGoogle Scholar
  24. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001b) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47:119–131CrossRefPubMedGoogle Scholar
  25. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2002) Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Validation List no. 84. Int J Syst Evol Microbiol 52:3–4CrossRefGoogle Scholar
  26. Malimas T, Yukphan P, Takahashi M, Muramatsu M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2009) Gluconobacter japonicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 59:466–471CrossRefPubMedGoogle Scholar
  27. Muramatsu Y, Yukphan P, Takahashi M, Kaneyasu M, Malimas T, Potacharoen W, Yamada Y, Nakagawa Y, Tanticharoen M, Suzuki K (2009) 16S rRNA gene sequences analysis of acetic acid bacteria isolated from Thailand. Microbiol Cult Coll 25:13–20Google Scholar
  28. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiol 151:2141–2150CrossRefGoogle Scholar
  29. Ndoye B, Cleenwerck I, Engelbeen K, Dubois-Dauphin R, Guiro AT, Van Trappen S, Willems A, Thonart P (2007) Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L.). Int J Syst Evol Microbiol 57:1576–1581CrossRefPubMedGoogle Scholar
  30. Okumura H, Uozumi T, Beppu T (1985) Construction of plasmid vectors and genetic transformation system for Acetobacter aceti. Agric Biol Chem 49:1011–1017CrossRefGoogle Scholar
  31. Pitiwittayakul N, Yukphan P, Sintuprapa W, Yamada Y, Theeragool G (2014) Identification of acetic acid bacteria isolated in Thailand and assigned to the genus Acetobacter by groEL gene sequence analysis. Ann Microbiol. doi: 10.1007/s13213-014-0994-9 Google Scholar
  32. Ruiz A, Poblet M, Mas A, Guillamon JM (2000) Identification of acetic acid bacteria by RFLP of PCR amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int J Syst Evol Microbiol 150:1981–1987CrossRefGoogle Scholar
  33. Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629CrossRefPubMedGoogle Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  35. Seearunruangchai A, Tanasupawat S, Keeratipibut S, Thawai C, Itoh T, Yamada Y (2004) Identification of acetic acid bacteria isolated from fruits and related materials collected in Thailand. J Gen Appl Microbiol 50:47–53CrossRefPubMedGoogle Scholar
  36. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Sci 334:670–674CrossRefGoogle Scholar
  37. Silva LR, Cleenwerck I, Rivas R, Swings J, Trujillo ME, Willems A, Velázquez E (2006) Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56:21–24CrossRefPubMedGoogle Scholar
  38. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  39. Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940CrossRefPubMedGoogle Scholar
  40. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P (2014) Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 64:1083–1089CrossRefPubMedGoogle Scholar
  41. Swings J (1992) The genera Acetobacter and Gluconobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer H-K (eds) The prokaryotes, A handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, vol. III. Springer, New York, pp 2268–2286Google Scholar
  42. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  44. Tanasupawat S, Thawai C, Yukphan P, Moonmangmee D, Itoh T, Adachi O, Yamada Y (2004) Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50:159–167CrossRefPubMedGoogle Scholar
  45. Tanasupawat S, Kommanee J, Yukphan P, Muramatsu Y, Nakagawa Y, Yamada Y (2011a) Acetobacter farinalis sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 57:159–167CrossRefPubMedGoogle Scholar
  46. Tanasupawat S, Kommanee J, Yukphan P, Muramatsu Y, Nakagawa Y, Yamada Y (2011b) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 142. Int J Syst Evol Microbiol 61:2563–2565CrossRefGoogle Scholar
  47. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  48. Verlander CP (1992) Detection of horseradish peroxidase by colorimetry. In: Kricka LJ (ed) Nonisotopic DNA probe techniques. Academic, New York, pp 185–201CrossRefGoogle Scholar
  49. Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24CrossRefPubMedGoogle Scholar
  50. Yamada Y, Aida K, Uemura T (1969) Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15:181–196CrossRefGoogle Scholar
  51. Yamada Y, Okada Y, Kondo K (1976) Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22:237–245CrossRefGoogle Scholar
  52. Yamada Y, Hosono R, Lisdiyanti P, Widyastuti Y, Saono S, Uchimura T, Komagata K (1999) Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 45:23–28CrossRefPubMedGoogle Scholar
  53. Yukphan P, Potacharoen W, Nakagawa Y, Tanticharoen M, Yamada Y (2004) Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S-23S rDNA internal transcribed spacer regions. J Gen Appl Microbiol 50:9–15CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2015

Authors and Affiliations

  • Nittaya Pitiwittayakul
    • 1
  • Pattaraporn Yukphan
    • 2
  • Winai Chaipitakchonlatarn
    • 2
  • Yuzo Yamada
    • 2
    • 3
    • 4
  • Gunjana Theeragool
    • 1
    • 5
    Email author
  1. 1.Interdisciplinary Graduate Program in Genetic Engineering, The Graduate SchoolKasetsart UniversityBangkokThailand
  2. 2.BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Klong LuangThailand
  3. 3.Laboratory of Applied Microbiology (Professor Emeritus), Department of Applied Biological Chemistry, Faculty of AgricultureShizuoka UniversityShizuokaJapan
  4. 4.Japan International Cooperation Agency (JICA Senior Overseas Volunteer)TokyoJapan
  5. 5.Department of Microbiology, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations