Annals of Microbiology

, Volume 65, Issue 3, pp 1381–1389 | Cite as

L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN

  • Muhammad NaveedEmail author
  • M. Amjad Qureshi
  • Zahir A. Zahir
  • M. Baqir Hussain
  • Angela Sessitsch
  • Birgit Mitter
Original Article


Burkholderia phytofirmans PsJN is a well-known plant growth-promoting bacterium that establishes rhizospheric and endophytic colonization in different plants. PsJN inoculation promotes growth of different horticultural crops. L-Tryptophan (L-TRP) application may further improve its effectiveness, due to substrate (L-TRP)-dependent inoculum (PsJN)-derived auxins in the rhizosphere. In the present study, the substrate (L-TRP)-dependent response of PsJN inoculation to maize growth and auxin biosynthesis was evaluated under pot conditions. In vitro auxin biosynthesis by PsJN was determined in the absence and presence of L-TRP, a physiological precursor of auxins. Surface-disinfected seeds were treated with peat-based inoculum and L-TRP solutions (10−4 and 10−5 M). Results revealed that L-TRP application and PsJN inoculation, when applied separately, significantly increased the growth parameters of maize compared to untreated control. However, PsJN inoculation supplemented with L-TRP (10−5 M) gave the most promising results and significantly increased plant height, photosynthesis, chlorophyll content, root biomass and shoot biomass up to 18, 16, 45, 62 and 55 %, respectively, compared to the uninoculated control. Similarly, higher values of N, P and IAA content were observed with precursor (L-TRP)–inoculum (PsJN) interaction. The inoculant strain efficiently colonized maize seedlings and was recovered from the rhizosphere, root and shoot of plants. The results imply that substrate (L-TRP)-derived IAA biosynthesis in the rhizosphere by PsJN inoculation could be a useful approach for improving the growth, photosynthesis and nutrient content of maize plants.


B. phytofirmans PsJN L-tryptophan Precursor–inoculum interaction Colonization Maize 



The authors gratefully acknowledge the Higher Education Commission (HEC) of Pakistan for financial support for this research.


  1. Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera L. co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95CrossRefGoogle Scholar
  2. Ait Barka E, Gognies S, Nowak J, Audran J-C, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142CrossRefGoogle Scholar
  3. Arnon ID (1949) Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:11–15CrossRefGoogle Scholar
  4. Arshad M, Frankenberger WT Jr (1997) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:45–151CrossRefGoogle Scholar
  5. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  6. Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasiliense mutant altered indole-3-acetic acid production. Res Microbiol 144:69–75PubMedCrossRefGoogle Scholar
  7. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603PubMedCrossRefGoogle Scholar
  8. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefGoogle Scholar
  9. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71:1685–1693PubMedCentralPubMedCrossRefGoogle Scholar
  10. Davies PJ (2004) The plant hormones: Their nature, occurrence and function. In: Davies PJ (ed) Plant Hormones: Biosynthesis, Signal Transduction, Action. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–15Google Scholar
  11. Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: Microbial production and function. Marcel Dekker, NY, USAGoogle Scholar
  12. Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449PubMedCrossRefGoogle Scholar
  14. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626PubMedCrossRefGoogle Scholar
  15. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soil 37:1–16Google Scholar
  16. Khalid A, Arshad M, Zahir ZA (2004a) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedCrossRefGoogle Scholar
  17. Khalid A, Tahir S, Arshad M, Zahir ZA (2004b) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Aust J Soil Res 42:921–926CrossRefGoogle Scholar
  18. Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological Approaches to Sustainable Soil Systems. Taylor & Francis/CRC Press, Boca Raton, Florida, pp 207–220CrossRefGoogle Scholar
  19. Khalid M, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial Strategies for Crop Improvement. Springer-Verlag Berlin Heidelberg, Germany, pp 133–160CrossRefGoogle Scholar
  20. Kulkarni GB, Nayak AS, Sajjan SS, Oblesha A, Karegoudar TB (2013) Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK. Lett Appl Microbiol 56:340–347PubMedCrossRefGoogle Scholar
  21. Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300PubMedCrossRefGoogle Scholar
  22. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25PubMedCrossRefGoogle Scholar
  23. Ludwig-Müller JJ (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773PubMedCrossRefGoogle Scholar
  24. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556CrossRefGoogle Scholar
  25. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impact of development and nitrate uptake. J Exp Bot 55:27–34PubMedCrossRefGoogle Scholar
  26. Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci U S A 102:17454–17459PubMedCentralPubMedCrossRefGoogle Scholar
  27. Martens DA, Frankenberger WT Jr (1993) Metabolism of tryptophan in soil. Soil Biol Biochem 25:1679–1687CrossRefGoogle Scholar
  28. Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013a) Advances in elucidating beneficial interactions between plants, soil and bacteria. Adv Agron 121:381–445CrossRefGoogle Scholar
  29. Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013b) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 30:doi: 10.3389/fpls.2013.00120Google Scholar
  30. Nowak J, Asiedu SK, Lazarovits G, Pillay V, Stewart A, Smith C, Liu Z (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting rhizobacterium. In: Carre F, Chagvardieff P (eds) Proceedings of the International Symposium on Ecophysiology and photosynthetic in vitro cultures, CEA. Aix-en-Provence, France, pp 173–180Google Scholar
  31. Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense cd under in vitro conditions. Can J Microbiol 39:187–192CrossRefGoogle Scholar
  32. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedCrossRefGoogle Scholar
  33. Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642PubMedCrossRefGoogle Scholar
  34. Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis: Laboratory manual. International Centre for Agricultural Research in Dry Areas (ICARDA), Aleppo, SyriaGoogle Scholar
  35. Sarwar M, Frankenberger WT Jr (1994) Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant Soil 160:97–104CrossRefGoogle Scholar
  36. Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 147:207–215CrossRefGoogle Scholar
  37. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefGoogle Scholar
  38. Sharma VK, Nowak J (1998) Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth-promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536CrossRefGoogle Scholar
  39. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  40. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23CrossRefGoogle Scholar
  41. Steel RGD, Torrie JH, Dicky DA (1997) Principles and procedures of statistics-A biometrical approach, 3rd edn. McGraw-Hill Book International Co., SingaporeGoogle Scholar
  42. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  43. Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedCentralPubMedCrossRefGoogle Scholar
  44. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010a) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294PubMedCrossRefGoogle Scholar
  45. Zahir ZA, Yasin HM, Naveed M, Anjum MA, Khalid M (2010b) L-Tryptophan application enhances the effectiveness of rhizobium inoculation for improving growth and yield of mung bean (Vigna radiata L.). Pak J Bot 42:1771–1780Google Scholar
  46. Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  • Muhammad Naveed
    • 1
    • 3
    Email author
  • M. Amjad Qureshi
    • 2
  • Zahir A. Zahir
    • 1
  • M. Baqir Hussain
    • 1
  • Angela Sessitsch
    • 3
  • Birgit Mitter
    • 3
  1. 1.Institute of Soil & Environmental SciencesUniversity of Agriculture Faisalabad 3840FaisalabadPakistan
  2. 2.Soil Bacteriology SectionAyub Agriculture Research Institute (AARI)FaisalabadPakistan
  3. 3.Bioresources UnitAIT Austrian Institute of Technology GmbHTullnAustria

Personalised recommendations