Annals of Microbiology

, Volume 65, Issue 2, pp 703–711 | Cite as

Composition and diversity of the bacterial community in snow leopard (Uncia uncia) distal gut

  • Honghai ZhangEmail author
  • Guangshuai Liu
  • Lei Chen
  • Weilai Sha
Original Article


Intestinal microflora influences many essential metabolic functions, and is receiving increasing attention from the scientific community. However, information on intestinal microbiota, especially for large wild carnivores, is insufficient. In the present study, the bacterial community in the feces of snow leopards (Uncia uncia) was described based on 16S rRNA gene sequence analysis. A total of 339 near-full-length 16S rRNA gene sequences representing 46 non-redundant bacterial phylotypes (operational taxonomical units, OTUs) were identified in fecal samples from four healthy snow leopards. Four different bacterial phyla were identified: Firmicutes (56.5 %), Actinobacteria (17.5 %), Bacteroidetes (13 %), and Proteobacteria (13 %). The phylum Actinobacteria was the most abundant lineage, with 40.4 % of all identified clones, but Clostridiales, with 50 % of all OTUs, was the most diverse bacterial order. The order Clostridiales was affiliated with four families: Clostridiaceae I, Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae. Lachnospiraceae was the most diverse family with 17 OTUs identified. These findings were basically consistent with previous reports on the bacterial diversity in feces from other mammals.


Snow leopard (Uncia uncia16S rRNA gene Feces Bacterial diversity 



The research was supported financially by the following grants: the National Natural Science Fund of China (NO. 31172119), the National Natural Science Fund of China (NO. 31372220), the Natural Science Fund of Shandong Province of China (NO. ZR2011CM009) and the PhD Programs Foundation of Ministry of Education of China (NO, 20113705110001). We are grateful to the Xining Zoo of Qinghai for their great support in sample collecting.


  1. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3(7):e2836CrossRefPubMedCentralPubMedGoogle Scholar
  2. Daly K, Stewart CSFHJ, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151CrossRefGoogle Scholar
  3. Desai AR, Musil KM, Carr AP, Hill JE (2009) Characterization and quantification of feline fecal microbiota using cpn 60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Vet Microbiol 137(1):120–128CrossRefPubMedGoogle Scholar
  4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedCentralPubMedGoogle Scholar
  5. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007a) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785CrossRefPubMedCentralPubMedGoogle Scholar
  6. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007b) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785. doi: 10.1073/pnas.0706625104 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Garcia-Mazcorro JF, Dowd SE, Poulsen J, Steiner JM, Suchodolski JS (2012) Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 1(3):340–347. doi: 10.1002/mbo3.36 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4):237–264CrossRefGoogle Scholar
  9. Handl S, Dowd SE, Garcia‐Mazcorro JF, Steiner JM, Suchodolski JS (2011) Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 76(2):301–310CrossRefPubMedGoogle Scholar
  10. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14):2317–2319CrossRefPubMedGoogle Scholar
  11. Jackson RM (1996) Home range, movements and habitat use of snow leopard (Uncia uncia) in Nepal. University of London, LondonGoogle Scholar
  12. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690CrossRefPubMedCentralPubMedGoogle Scholar
  13. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R (2008a) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651CrossRefPubMedCentralPubMedGoogle Scholar
  14. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6(10):776–788CrossRefPubMedCentralPubMedGoogle Scholar
  15. Mentula S, Harmoinen J, Heikkilä M, Westermarck E, Rautio M, Huovinen P, Könönen E (2005) Comparison between cultured small-intestinal and fecal microbiotas in beagle dogs. Appl Environ Microbiol 71(8):4169–4175CrossRefPubMedCentralPubMedGoogle Scholar
  16. Middelbos IS, Boler BMV, Qu A, White BA, Swanson KS, Fahey GC Jr (2010) Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One 5(3):e9768CrossRefPubMedCentralPubMedGoogle Scholar
  17. Rahner R (1901) Bakteriologische mitteilungen ueber die darmbakterien der huehner. Zentralbl Bakteriol Parasitenkd 80:239–244Google Scholar
  18. Ritchie LE, Steiner JM, Suchodolski JS (2008) Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 66(3):590–598CrossRefPubMedGoogle Scholar
  19. Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS (2010) Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 144(1):140–146CrossRefPubMedGoogle Scholar
  20. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506CrossRefPubMedCentralPubMedGoogle Scholar
  21. Suchodolski JS, Camacho J, Steiner JM (2008) Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol 66(3):567–578CrossRefPubMedGoogle Scholar
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  23. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121(6):2126CrossRefPubMedCentralPubMedGoogle Scholar
  24. Tun HM, Brar MS, Khin N, Jun L, Hui RK-H, Dowd SE, Leung FC-C (2012) Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 88(3):369–376CrossRefPubMedGoogle Scholar
  25. Wang M, Ahrné S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231CrossRefPubMedGoogle Scholar
  26. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440CrossRefPubMedCentralPubMedGoogle Scholar
  27. Xenoulis PG, Palculict B, Allenspach K, Steiner JM, Van House AM, Suchodolski JS (2008) Molecular‐phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol Ecol 66(3):579–589CrossRefPubMedGoogle Scholar
  28. Zhang H, Chen L (2010) Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 37(8):4013–4022. doi: 10.1007/s11033-010-0060-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  • Honghai Zhang
    • 1
    Email author
  • Guangshuai Liu
    • 1
    • 2
  • Lei Chen
    • 1
  • Weilai Sha
    • 1
  1. 1.College of Life ScienceQufu Normal UniversityQufuChina
  2. 2.College of Wildlife ResourceNortheast Forestry UniversityHeilongjiangChina

Personalised recommendations