Annals of Microbiology

, Volume 64, Issue 3, pp 905–919 | Cite as

Biological detoxification of mycotoxins: a review

  • Amal S. HathoutEmail author
  • Soher E. Aly
Review Article


Mycotoxins are secondary fungal metabolites and are reported to be carcinogenic, genotoxic, teratogenic, dermato-, nephro- and hepatotoxic. Several studies have shown that economic losses due to mycotoxins occur at all levels of food and feed production, including crop and animal production, processing and distribution. Therefore, there is a great demand for a novel approach to prevent both the formation of mycotoxins in food and feed and the impact of existing mycotoxin contamination. Recently, investigators have reported that many microorganisms including bacteria, yeast, moulds, actinomycetes and algae are able to remove or degrade mycotoxins in food and feed. We have reviewed various strategies for the detoxification of mycotoxins using microorganisms such as bacteria, yeast and fungi.


Mycotoxins Detoxification Bacteria Fungi Yeast 


  1. Abrunhosa L, Serra R, Venancio A (2002) Biodegradation of ochratoxin A by fungi isolated from grapes. J Agric Food Chem 50:7493–7496PubMedGoogle Scholar
  2. Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, van Zyl WH (2006) Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int J Food Microbiol 109:121–126PubMedGoogle Scholar
  3. Angioni A, Caboni P, Garau A, Farris A, Orro D, Budroni M, Cabras P (2007) In vitro interaction between ochratoxin A and different strains of Saracchomyces cerevisiae and Kloeckera apiculata. J Agric Food Chem 55(5):2043–2048PubMedGoogle Scholar
  4. Arai T, Tatsuya I, Koyama Y (1967) Antimicrobial activity of aflatoxins. J Bacteriol 93:59–64PubMedCentralPubMedGoogle Scholar
  5. Aravind KL, Patil VS, Devegowda G, Umakantha B, Ganpules P (2003) Efficacy of esterified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers. Poult Sci 82(4):571–576PubMedGoogle Scholar
  6. Awad WA, Böhm J, Razzazi-Fazeli E, Faukal K, Zentek J (2004) Effects of feeding deoxynivalenol contaminated wheat on the performance of broiler chickens. The 8th Proceeding Symposium for the European Society of Veterinary Comparative Nutrition, Budapest, Hungary, pp 149–153Google Scholar
  7. Awad WA, Böhm J, Razzazi-Fazeli E, Ghareeb K, Zentek J (2006) Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult Sci 85:974–979PubMedGoogle Scholar
  8. Bata A, Lasztity R (1999) Detoxification of mycotoxin contaminated food and feed by microorganisms. Trends Food Sci Technol 10:223–228Google Scholar
  9. Battcock M, Azam-Ali S (1998) Fermented fruits and vegetables—a global perspective, FAO agricultural services bulletin N°134. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  10. Bejaoui H, Mathieu F, Taillandier P, Lebrihi A (2004) Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J Appl Microbiol 97:1038–1044PubMedGoogle Scholar
  11. Bejaoui H, Mathieu F, Taillandier P, Lebrihi A (2006) Biodegradation of ochratoxin A by Aspergillus section Nigri species isolated from French grapes: a potential means of ochratoxin A decontamination in grape juices and musts. FEMS Microbiol 255:203–208Google Scholar
  12. Bennett GA, Richard JL (1996) Influence of processing on Fusarium mycotoxins in contaminated grains. Food Technol 50(5):235–238Google Scholar
  13. Binder J, Horvath EM, Schatzmayr G, Ellend N, Danner H, Krska R, Braun R (1997) Screening for deoxynivalenol-detoxifying anaerobic rumen microorganisms. Cereal Res Commun 25:343–346Google Scholar
  14. Binder EM, Binder J, Ellend N, Schaffer E, Krska R, Braun R (1998) Microbiological degradation of deoxynivalenol and 3-acetyl-deoxynivalenol. In: Miraglia M, van Egmond HP, Brera C, Gilbert J (eds) Mycotoxins and phycotoxins: Developments in chemistry, toxicology and food safety. Alaken, Fort Collins, pp 279–285Google Scholar
  15. Binder EM, Heidler D, Schatzmayr G, Thimm N (2000) Mycotoxins and Phycotoxins in perspective at the turn of the Millennium. In: Koe WJ, Samson RA, van Egmond HP, Gilbert J, Sabino M (eds) Proceedings of the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins, Guaruja, Brazil. pp 271–277Google Scholar
  16. Biomin (2011) Biomin writes history.
  17. Bode HB, Irschik H, Wenzel SC, Reichenbach H, Muller R, Höfle G (2003) The leupyrrins: a structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. J Nat Prod 66:1203–1206PubMedGoogle Scholar
  18. Böhm J, Grajewski J, Asperger H, Cecon B, Rabus B, Razzazi E (2000) Study on biodegradation of some A- and B trichothecenes and ochratoxin A by use of probiotic microorganisms. Mycotoxin Res 16A:70–74Google Scholar
  19. Bol J, Smith JE (1989) Biotransformation of aflatoxin. Food Biotechnol 3:127–144Google Scholar
  20. Bolognani F, Rumney CJ, Rowland R (1997) Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem Toxicol 35:535–545PubMedGoogle Scholar
  21. Böswald C, Engelhardt G, Vogel H, Wallnöfer PR (1995) Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat Toxins 3(3):138–144PubMedGoogle Scholar
  22. Bren U, Guengerich FP, Mavri J (2007) Guanine alkylation by the potent carcinogen aflatoxin B1: quantum chemical calculations. Chem Res Toxicol 20:1134–1140PubMedGoogle Scholar
  23. Bruinink A, Rasonyi T, Sidler C (1998) Differences in neurotoxic effects of ochratoxin A, ochracin and ochratoxin-α in vitro. Nat Toxins 6:173–177PubMedGoogle Scholar
  24. Bueno DJ, Casale CH, Pizzolitto RP, Salano MA, Olivier G (2006) Physical adsorptions of Aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. J Food Protect 70:2148–2154Google Scholar
  25. Caridi A, Galvano F, Tafuri A, Ritieni A (2006a) Ochratoxin A removal during winemaking. Enzym Microb Technol 40:122–126Google Scholar
  26. Caridi A, Galvano F, Tafuri A, Ritieni A (2006b) In vitro screening of Saccharomyces strains for Ochratoxin A removal from liquid medium. Ann Microbiol 56(12):135–137Google Scholar
  27. Caridi A, Sidari R, Pulvirenti A, Meca G, Ritieni A (2012) Ochratoxin A adsorption phenotype: an inheritable yeast trait. J Gen Appl Microbiol 58:225–233PubMedGoogle Scholar
  28. Castoria R, Mannina L, Durán-Patrόn R, Maffei F, Sobolev AP, De Felice DV, Pinedo-Rivilla C, Ritieni A, Ferracane R, Wright SAI (2011) Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 59:11571–11578PubMedGoogle Scholar
  29. Cecchini F, Morassut M, Garcia Moruno E, Di Stefano R (2006) Influence of yeast strain on ochratoxin A content during fermentation of white and red must. Food Microbiol 23(5):411–417PubMedGoogle Scholar
  30. Çelỳk K, Denly M, Savas T (2003) Reduction of toxic effects of aflatoxin by using baker yeast (Saccharomyces cerevisiae) in growing broiler chicken diets. Rev Bras Zootec 32:615–619Google Scholar
  31. Cenci G, Caldini G, Trotta F, Bosi P (2008) In vitro inhibitory activity of probiotic spore-forming bacilli against genotoxins. Lett Appl Microbiol 46:331–337PubMedGoogle Scholar
  32. Chaurasia HK (1995) Kernel infection and aflatoxin production in peanut (Arachis hypogaea L) by Aspergillus flavus in presence of geocarpospheric bacteria. J Food Sci Technol 32:459–464Google Scholar
  33. Cho KJ, Kang JS, Cho WT, Lee CH, Ha JK, Song KB (2010) In vitro degradation of zearalenone by Bacillus subtilis. Biotechnol Lett 32(12):1921–1924PubMedGoogle Scholar
  34. Ciegler A, Lillehoj EB, Peterson RE, Hall HH (1966) Microbial detoxification of aflatoxin. Appl Microbiol 14:934–939PubMedCentralPubMedGoogle Scholar
  35. Coelho AR, Celli MG, Sataque Ono EY, Hoffmann FL, Pagnocca FC, Garcia S, Sabino M, Harada KI, Wosiacki G, Hirooka EY (2008) Patulin biodegradation using Pichia ohmeri and Saccharomyces cerevisiae. World Mycotoxin J 1:325–331Google Scholar
  36. Cole RJ, Cox RH (1981) The aflatoxins, Handbook of toxic fungal metabolites. Academic, New York, pp 1–66Google Scholar
  37. Cole RJ, Kirksez JW (1971) Aflatoxin G1 metabolism by Rhizopus species. J Agric Food Chem 19:222–223PubMedGoogle Scholar
  38. Cole RJ, Kirksey JW, Blankenship BR (1972) Conversion of aflatoxin B1 to isomeric hydroxy compounds by Rhizopus subspecies. J Agric Food Chem 20:1100–1102PubMedGoogle Scholar
  39. Council for Agricultural Science and Technology (2003) Mycotoxins: Risks in Plant, Animal, and Human Systems. Council for Agricultural Science and Technology, Ames, Task Force Report, No. 139Google Scholar
  40. D’Souza DH, Brackett RE (1998) The role of trace metal ions in aflatoxin B1 degradation by Flavobacterium aurantiacum. J Food Protect 61:1666–1669Google Scholar
  41. D’Souza DH, Brackett RE (2000) The influence of divalent cations and chelators on aflatoxin B1 degradation by Flavobacterium aurantiacum. J Food Protect 63:102–105Google Scholar
  42. D’Souza DH, Brackett RE (2001) Aflatoxin B1 degradation by Flavobacterium aurantiacum in the presence of reducing conditions and seryl and sulfhydryl group inhibitors. J Food Protect 64:268–271Google Scholar
  43. Del Prete V, Rodriguez H, Carrascosa AV, De Las RB, Garcia-Moruno E, Muňoz R (2007) In vitro removal of ochratoxin A by wine lactic acid bacteria. J Food Protect 70(9):2155–2160Google Scholar
  44. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184PubMedGoogle Scholar
  45. Detroy RW, Hesseltine CW (1968) Isolation and biological activity of a microbial conversion product of aflatoxin B1. Nature 219:967PubMedGoogle Scholar
  46. Detroy RW, Hesseltine CW (1970) Aflatoxicol: structure of a new transformation product of aflatoxin B1. Can J Biochem 48:830–832PubMedGoogle Scholar
  47. Duvick J, Bowen B, Gilliam J, Maddox J, Rood T, Wang X (2003) Fumonisin detoxification compositions and methods. US patent 6670189. Pioneer Hi- Bred International, Inc, Des MoinesGoogle Scholar
  48. El-Deeb BA (2005) Isolation and characterization of soil bacteria able to degrade zearalenone. J Bot 32:3–30Google Scholar
  49. El-Nezami H, Salminen S, Ahokas J (1996) Biologic control of food carcinogen using Lactobacillus GG. Nutr Today 31:41–42Google Scholar
  50. El-Nezami H, Kankaanpää P, Salminen S, Ahokas J (1998a) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 36:321–326PubMedGoogle Scholar
  51. El-Nezami H, Kankaanpää P, Salminen S, Ahokas J (1998b) Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J Food Protect 61:466–468Google Scholar
  52. El-Nezami H, Mykkänen H, Kankaanpää P, Salminen S, Ahokas J (2000) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1, from the chicken duodenum. J Food Protect 63:549–552Google Scholar
  53. El-Nezami H, Chrevatidis A, Auriola S, Salminen S, Mykkänen H (2002a) Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit Contam 19(7):680–686PubMedGoogle Scholar
  54. El-Nezami H, Haskard C, Salminen E, Mykkänen H, Ahokas J, Salminen S (2002b) Lactic acid bacteria and bifidobacteria reduce dietary exposure to aflatoxins. Br J Nutr 88:S119–S120Google Scholar
  55. El-Nezami H, Polychronaki N, Samlminen S, Mykkänen H (2002c) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative alpha zearalenol. Appl Environ Microbiol 68:3545–3549PubMedCentralPubMedGoogle Scholar
  56. El-Nezami H, Polychronaki N, Yuan Kun L, Haskard C, Juvonen R, Salminen S, Mykkänen H (2004) Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. J Agric Food Chem 52(14):4577–4581PubMedGoogle Scholar
  57. El-Nezami H, Polychronaki N, Ma J, Zhu H, Ling W, Salminen E, Juvonen R, Salminen S, Poussa T, Mykkänen H (2006) Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr 83:1199–1203PubMedGoogle Scholar
  58. El-Sharkawy SH, Abul-Hajj YJ (1988) Microbial transformation of zearalenone. 2. Reduction, hydroxylation, and methylation products. J Org Chem 53:515–519Google Scholar
  59. Faraj MK, Smith JE, Harran G (1993) Aflatoxin biodegradation: effects of temperature and microbes. Mycol Res 97:1388–1392Google Scholar
  60. Fernández J, Mohedano AF, Gaya P, Medina M, Nuňez M (2000) Purification and properties of two intracellular aminopeptidases produced by Brevibacterium linens SR3. Int Dairy J 10:241–248Google Scholar
  61. Freimund S, Sauter M, Rys P (2003) Efficient adsorption of the mycotoxins zearalenone and T-2 toxin on a modified yeast glucan. J Environ Sci Health B 38(3):243–255PubMedGoogle Scholar
  62. Fuchs E, Binder EM, Heidler D, Krska R (2000) Characterization of metabolites after microbial degradation of A- and B-trichothecenes by BBSH 797. Mycotoxin Res 16A:66–69Google Scholar
  63. Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19:379–386PubMedGoogle Scholar
  64. Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmuller S (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 46:1398–1407PubMedGoogle Scholar
  65. Galtier P (2003) Toxic effects of mycotoxins. In: Lyons TP, Jacques KA (eds) Importance of biotransformation systems in nutritional biotechnology in the feed and food industries. Proceeding of the Alltech’s 19th Annual Symposium. Bath Press, NottinghamGoogle Scholar
  66. Gratz S, Mykkänen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami H (2004) Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Appl Environ Microbiol 70(10):6306–6308PubMedCentralPubMedGoogle Scholar
  67. Gratz S, Mykkänen H, El-Nezami H (2005) Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Protect 68(11):2470–2474Google Scholar
  68. Guan S, Ji C, Zhou T, Li J, Ma Q, Niu T (2008) Aflatoxin B1 degradation by Stenotrophomonas Maltophilia and other microbes selected using coumarin medium. Int J Mol Sci 9:1489–1503PubMedCentralPubMedGoogle Scholar
  69. Guan S, Zhao L, Ma Q, Zhou T, Wang N, Hu X, Ji C (2010) In vitro efficacy of Myxococcus fulvus ANSM068 to biotransform aflatoxin B1. Int J Mol Sci 11:4063–4079PubMedCentralPubMedGoogle Scholar
  70. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S (2008) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46:160–165PubMedGoogle Scholar
  71. Hao YY, Brackett RE (1998) Removal of aflatoxin B1 from peanut milk inoculated with Flavobacterium aurantiacum. J Food Sci 53:1384–1386Google Scholar
  72. Haskard CA, Binnion C, Ahokas J (2000) Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem Biol Interact 128:39–49PubMedGoogle Scholar
  73. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 67:3086–3091PubMedCentralPubMedGoogle Scholar
  74. Hateb S, Yue T, Mohamed O (2012a) Reduction of patulin in aqueous solution by lactic acid bacteria. J Food Sci 77(4):238Google Scholar
  75. Hateb S, Yue T, Mohamed O (2012b) Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol 112(5):892–899Google Scholar
  76. Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58:179–186PubMedGoogle Scholar
  77. He P, Young LG, Forsberg C (1993) Microbially detoxified vomitoxin- contaminated corn for young pigs. J Anim Sci 71:963–967PubMedGoogle Scholar
  78. Heidler D, Schatzmayr G (2003) A new approach to managing mycotoxins. World Poult Reed 19(2):12–15Google Scholar
  79. Hernandez-Mendoza A, Guzman-de-Péna D, Garcia HS (2009) Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. J Appl Microbiol 107:395–403PubMedGoogle Scholar
  80. Hernandez-Mendoza A, Guzman-de-Péna D, González-Cόrdova AF, Vallejo-Cόrdova B, Garcia HS (2010) In vivo assessment of the potential protective effect of Lactobacillus casei Shirota against aflatoxin B1. Dairy Sci Technol 90:729–740Google Scholar
  81. Hernandez-Mendoza A, Rivas-Jimenez L, Garcia HS (2011) Assessment of Aflatoxin B1 Binding to Lactobacillus reuteri by Microscopy and Fluorescence Techniques. Food Biotechnol 25:140–150Google Scholar
  82. Hochsteiner W, Schuh M, Luger K, Baumgartner W (2000) Influence of mycotoxins contaminated feed blood parameters and milk production. Berl Munch Tierarztl Wochenschr 113:14–21PubMedGoogle Scholar
  83. Hormisch D, Brost I, Kohring G-W, Giffhorn F, Krippenstedt RM, Stackebrandt E, Farber P, Holtzapfel WH (2004) Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst Appl Microbiol 27:553–660Google Scholar
  84. Hult K, Teiling A, Gatenbeck S (1976) Degradation of ochratoxin A by a ruminant. Appl Environ Microbiol 32:41–49Google Scholar
  85. Hwang CA, Draughon FA (1994) Degradation of ochratoxin A by Acinetobacter calcoaceticus. J Food Protect 57:410–414Google Scholar
  86. Hwang KT, Lee W, Kim GY, Lee J, Jun W (2005) The Binding of Aflatoxin B1 Modultaes the Adhesion Properties of Lactobacillus casei KCTC 3260 to a HT29 Colon Cancer Cell Line. Food Sci Biotechnol 14:866–870Google Scholar
  87. Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322PubMedGoogle Scholar
  88. Jansen R, Kunze B, Reichenbach H, Hoefle G (2003) Antibiotics from gliding bacteria. Part 93. Chondrochloren A and B, new amino styrenes from Chondromyces crocatus (Myxobacteria). Eur J Org Chem 14:2684–2689Google Scholar
  89. Jard G, Liboz T, Mathieu F, Guyonvarch A, Lebrihi A (2009) Biotransformation of the mycotoxin zearalenone by a fungal strain of Aspergillus niger. ISM conference 2009, Tulln, Austria.Google Scholar
  90. Jard G, Liboz T, Mathieu F, Guyonvarćh A, Lebrihi A (2011) Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit Contam Part A 28(11):1590–1609Google Scholar
  91. Jespersen L (2003) Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res 3:191–200PubMedGoogle Scholar
  92. Kabak B, Var I (2004) Binding of aflatoxin M1 by Lactobacillus and Bifidobacterium strains. Milchwissenschaft 59:301–303Google Scholar
  93. Kabak B, Var I (2008) Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J Environ Sci Health B 43:617–624PubMedGoogle Scholar
  94. Kabak B, Dobson ADW, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit Rev Food Sci Nutr 46:593–619PubMedGoogle Scholar
  95. Kankaanpää P, Tuomola E, El-Nezami H, Ahokas J, Salminen SJ (2000) Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG innCaco-2 model. J Food Protect 63:412–414Google Scholar
  96. Karaman M, Basmacioglu H, Ortatatli M, Oguz H (2005) Evaluation of the detoxifying effect of yeast glucomannan on aflatoxicosis in broilers as assessed by gross examination and histopathology. Br Poult Sci 46(3):394–400PubMedGoogle Scholar
  97. Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91:491–504PubMedCentralPubMedGoogle Scholar
  98. Khanafari A, Soudi H, Miraboulfathi M, Osboo RK (2007) A in vitro investigation of aflatoxin B1 biological control by Lactobacillus plantarum. Pak J Biol Sci 10(15):2553–2556PubMedGoogle Scholar
  99. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351PubMedGoogle Scholar
  100. Knasmuller S, Steinkellner H, Hirschl AM, Rabot S, Nobis EC, Kassie F (2001) Impact of bacteria in dairy products and of the intestinal microflora on genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat Res 480–481:129–138PubMedGoogle Scholar
  101. Knol W, Bol J, Huis in’t Veld JHJ (1990) Detoxification of aflatoxin B1 in feeds by Rhizopus oryzae in solid state. In: Zeuthen P, Cheftel JC, Eriksson C, Gormley TR, Linko P, Paulus K (eds) Food biotechnology, vol 2. Elsevier Applied Science, London, pp 132–136Google Scholar
  102. Kollöffel B, Meile L, Teuber M (1999) Analysis of Brevibacteria on the surface of Gruyere cheese detected by in situ hybridization and by colony hybridization. Lett Appl Microbiol 29:317–322Google Scholar
  103. Kubicek C, Rohr M (1985) Citric acid fermentation. CRC Crit Rev Biotechnol 3(4):331–373Google Scholar
  104. Kunze B, Reichenbach H, Mueller R, Höfle G (2005) Aurafuron A and B, new bioactive polyketides from Stigmatella aurantiaca and Archangium gephyra (myxobacteria). Fermentation, isolation, physico-chemical properties, structure and biological activity. J Antibiot 58:244–251PubMedGoogle Scholar
  105. Kusumaningtyas E, Widiastuti R, Maryam R (2006) Reduction of aflatoxin B1 in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus, and their combination. Mycopathologia 162:307–311PubMedGoogle Scholar
  106. Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT (2004) Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit Contam 21:158–164PubMedGoogle Scholar
  107. Lankaputhra WEV, Shah NP (1998) Antimutagenic properties of probiotic bacteria and of organic acids. Mutat Res 397:169–182PubMedGoogle Scholar
  108. Lee YK, El-Nezami H, Haskard CA, Gratz S, Puong KY, Salminen S, Mykkänen H (2003) Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria. J Food Protect 66:426–430Google Scholar
  109. Leibold T, Sasse F, Reichenbach H, Höfle G (2004) Cyrmenins, novel antifungal peptides containing a nitrogen-Linked β-methoxyacrylate pharmacophore: isolation and structural elucidation. Eur J Org Chem 2:431–435Google Scholar
  110. Lillehoj EB, Ciegler BA, Hall HH (1967) Aflatoxin B1 uptake by Flavobacterium aurantiacum and resulting toxic effects. J Bacteriol 93:464–471PubMedCentralPubMedGoogle Scholar
  111. Line JE, Brackett RE (1995) Role of toxin concentration and second carbon source in microbial transformation of aflatoxin B1 by Flavobacterium aurantiacum. J Food Protect 58:1042–1044Google Scholar
  112. Line JE, Brackett RE, Willikinson RE (1994) Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum. J Food Protect 57:788–791Google Scholar
  113. Mann R, Rehm HJ (1976) Degradation products from aflatoxin B1 by Corynebacterium rubrum, Aspergillus niger, Trichoderma viride and Mucor ambiguus. Eur J Appl Microbiol 2:297–306Google Scholar
  114. Mirocha CJ, Schauerhamer B, Christensen CM, Niku-Paavola ML, Nummi M (1979) Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Appl Environ Microbiol 38:749–750PubMedCentralPubMedGoogle Scholar
  115. Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43:245–264PubMedGoogle Scholar
  116. Mokoena MP, Chelule PK, Gqaleni N (2005) Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J Food Protect 68:2095–2099Google Scholar
  117. Mokoena MP, Chelule PK, Gqaleni N (2006) The toxicity and decreased concentration of aflatoxin B in natural lactic acid fermented maize meal. J Appl Microbiol 100(4):773–777PubMedGoogle Scholar
  118. Molnar O, Schatzmayr G, Fuchs E, Prillinger H (2004) Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671PubMedGoogle Scholar
  119. Moss MO (1998) Recent studies of mycotoxins. J Appl Microbiol Symp Suppl 84:62S–76SGoogle Scholar
  120. Moss MO, Long MT (2002) Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit Contam 19:387–399PubMedGoogle Scholar
  121. Motomura M, Toyomasu T, Mizuno K, Shinozawa T (2003) Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiol Res 158:237–242PubMedGoogle Scholar
  122. Nadathur SR, Gould SJ, Baklynsli AT (1994) Antimutagenicity of fermented milk. J Dairy Sci 77:3287–3295PubMedGoogle Scholar
  123. Nakazato M, Morozumi S, Saito K, Fujinuma K, Nishima T, Kasai N (1990) Inter conversion of Aflatoxin B1 and Aflatoxicol by Several Fungi. Appl Environ Microbiol 56:1465–1470PubMedCentralPubMedGoogle Scholar
  124. Niderkorn V (2007) Activites de biotransformation et de séquestration des fusariotoxines chez les bacteries fermentaires pour la détoxification des ensilages de mais. Thèse de Doctorat, Université Blaise Pascal, Clermont-Ferrand-Theix, FranceGoogle Scholar
  125. Niderkorn V, Boudra H, Morgavi DP (2006) Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Appl Environ Microbiol 101:849–856Google Scholar
  126. Niderkorn V, Morgavi DP, Pujos E, Tissandier A, Boudra H (2007) Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit Contam 24(4):406–415PubMedGoogle Scholar
  127. Niderkorn V, Morgavi DP, Aboab B, Lemaire M, Boudra H (2009) Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1and B2 by lactic acid bacteria. J Appl Microbiol 106:977–985PubMedGoogle Scholar
  128. Nout MJR (1989) Effect of Rhizopus and Neurospora spp. on growth of Aspergillus flavus and A. parasiticus and accumulation of aflatoxin B1 in groundnut. Mycol Res 93:518–523Google Scholar
  129. Oluwafemi F, Kumar M, Bandyopadhyay R, Ogunbanwo T, Ayanwande KB (2010) Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Rev 29(3–4):115–122Google Scholar
  130. Onraedt A, Soetaert W, Vandamme E (2005) Industrial importance of the genus Brevibacterium. Biotechnol Lett 27:527–605PubMedGoogle Scholar
  131. Orrhage K, Sillerstrom E, Gustafsson JA, Nord CE, Rafter J (1994) Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res 311:239–248PubMedGoogle Scholar
  132. Özkaya Ş (2001) Ülkemizde Aflatoksin Sorunu Yaşanan Bazı Gıdalarda AFB1’in Azaltılması veya Giderilmesinde Flavobacterium aurantiacum’ unnEtkinliğinin Araştırılması. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı. Doktora Tezi. Ankara. 86s.Google Scholar
  133. Özpinar H, Augonyte G, Drochner W (1999) Inactivation of ochratoxin in ruminal fluid with variation of pH-value and fermentation parameters in an in vitro system. Environ Toxicol Pharmacol 7:1–9PubMedGoogle Scholar
  134. Parent-Massin D (2004) Haematotoxicity of trichothecenes. Toxicol Lett 153:75–81PubMedGoogle Scholar
  135. Peltonen K, El-Nezami H, Salminen S, Ahokas J (2000) Binding of aflatoxin B1 by probiotic bacteria. J Sci Food Agric 80:1941–1945Google Scholar
  136. Peltonen K, El-Nezami H, Haskard C, Ahokas J, Salminen S (2001) Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84:2152–2156PubMedGoogle Scholar
  137. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A (2008) Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. J Appl Microbiol 104:1495–1502PubMedGoogle Scholar
  138. Pierides M, El-Nezami H, Peltonen K, Salminen S, Ahokas J (2000) Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. J Food Protect 63:645–650Google Scholar
  139. Piotrowska M, Zakowska Z (2000) The biodegradation of ochratoxin A in food products by lactic acid bacteria and baker’s yeast. Food Biotechnol 17:307–310Google Scholar
  140. Piotrowska M, Zakowska Z (2005) The limitation of ochratoxin A by lactic acid bacteria strains. Pol J Microbiol 54:279–286PubMedGoogle Scholar
  141. Raju MVLN, Devegowda G (2000) Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br Poult Sci 41:640–650PubMedGoogle Scholar
  142. Reichenbach H (2001) Myxobacteria, producers of noval bioactive substances. J Indian Microbiol Biotechnol 27:149–156Google Scholar
  143. Reichenbach H, Dworkin M (1992) The myxobacteria, the prokaryote. Spriger-Verlag, New York, pp 3418–3487Google Scholar
  144. Reichenbach H, Hoefle G (1993) Production of bioactive secondary metabolites. Myxobact Am Soc Microbiol, Washington DC, pp 347–397Google Scholar
  145. Richard JL (2007) Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 119:3–10PubMedGoogle Scholar
  146. Ringot D, Lerzy B, Bonhoure JP, Auclair E, Orial E, Larondelle Y (2005) Effect of temperature on vitro ochratoxin A biosynthesis onto yeast cell wall derivatives. Process Biochem 40:3008–3016Google Scholar
  147. Rodriguez H, Reveron I, Doria F, Costantini A, De Las RB, Muňoz R, Garcia-Moruno E (2011) Degradation of Ochratoxin A by Brevibacterium Species. J Agric Food Chem 59:10755–10760PubMedGoogle Scholar
  148. Sakai M, Miyauchi K, Kato N, Masai E, Fukuda M (2003) 2- Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 69:327–433Google Scholar
  149. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17PubMedGoogle Scholar
  150. Schatzmayr G, Schatzmayr D, Pichler E, Taubel M, Loibner AP, Binder EM (2006) A novel approach to deactivate ochratoxin A. In: Njapau H, Trujillo S, van Egmond H, Park D (eds) Mycotoxins and phycotoxins: Advances in determination, toxicology and exposure management. Academic Publishers, Wageningen, pp 279–290Google Scholar
  151. Shahin AAM (2007) Removal of aflatoxin B1 from contaminated liquid media by dairy lactic acid bacteria. Int J Agric Biol 9:71–75Google Scholar
  152. Shantha T (1999) Fungal degradation of aflatoxin B1. Nat Toxins 7:175–178PubMedGoogle Scholar
  153. Shapira R (2004) Detection and control. In Qinghua Wu, Alena Jezkova, Zonghui Yuan, Lucie Pavlikova, Vlastimil Dohna, and Kamil Biological degradation of aflatoxins. Drug Metab Rev 41(1):1–7Google Scholar
  154. Shetty PH, Hald B, Jespersen L (2007) Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int J Food Microbiol 113:41–46PubMedGoogle Scholar
  155. Shima J, Takase S, Takahashi Y, Iwai Y, Fujimoto H, Yamazaki M, Ochi K (1997) Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl Environ Microbiol 63(10):3825–3830PubMedCentralPubMedGoogle Scholar
  156. Skrinjar M, Rasić JL, Stojicić V (1996) Lowering of ochratoxin A level in milk by yoghurt bacteria and Bifidobacteria. Folia Microbiol (Praha) 41(1):26–28Google Scholar
  157. Smiley RD, Draughon FA (2000) Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. J Food Protect 63(3):415–418Google Scholar
  158. Sørhaug T (1981) Comparison of peptide-hydrolases from six strains of Brevibacterium linens. Milchwissenschaft 36:137–139Google Scholar
  159. Soriano JM, Gonzalez L, Catala AI (2005) Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Prog Lipid Res 44:345–356PubMedGoogle Scholar
  160. Stidl R, Fuchs S, Koller V, Marian B, Sontag G, Ehrlich V, Knasmueller S (2007) DNA-protective properties of lactic acid bacteria. In: Durackova Z, Slamenova D (eds), Synthetic and Natural Compounds in Cancer Therapy and Prevention. Bratislava, SlovakiaGoogle Scholar
  161. Stidl R, Sontag G, Koller V, Knasmüller S (2008) Binding of heterocyclic aromatic amines by lactic acid bacteria: results of a comprehensive screening trial. Mol Nutr Food Res 52(3):322–329PubMedGoogle Scholar
  162. Stinton EE, Osman SF, Bills DD (1979) Water soluble products from patulin during alcoholic fermentation of apple juice. J Food Sci 44: 788,789,796Google Scholar
  163. Sundstøl-Eriksen G, Pettersson H, Lundh T (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42(4):619–624PubMedGoogle Scholar
  164. Sweeney MJ, Dobson ADW (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158PubMedGoogle Scholar
  165. Sweeney MJ, Dobson AD (1999) Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett 175:149–163PubMedGoogle Scholar
  166. Tejada-Castaneda ZI, Avila-Gonzalez E, Casaubon-Huguenin MT, Cervantes-Olivares RA, Vasquez-Pelaez C, Hernandez-Baumgarten EM, Moreno-Martinez E (2008) Bio-detoxification of aflatoxin-contaminated chick feed. Poult Sci 87:1569–1576PubMedGoogle Scholar
  167. Teniola OD, Addo PA, Brost IM, Färber P, Jany K-D, Alberts JF, Van Zyl WH, Steyn PS, Holzapfel WH (2005) Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. Int J Food Microbiol 105:111–117PubMedGoogle Scholar
  168. Tinyiro SE, Yao W, Sun X, Wokadala C, Wang S (2011) Scavenging of zearalenone by Bacillus strains—in vitro. Res J Microbiol 6(3):304–309Google Scholar
  169. Tuomola EM, Ouwehand AC, Salminen SJ (2000) Chemical, physical and enzymatic pretreatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int J Food Microbiol 60:75–81PubMedGoogle Scholar
  170. Turbic A, Ahokas JT, Haskard CA (2002) Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Addit Contam 19:144–152PubMedGoogle Scholar
  171. Var I, Erginkaya Z, Kabak B (2009) Reduction of ochratoxin A levels in white wine by yeast treatments. J Inst Brew 115(1):30–34Google Scholar
  172. Varga J, Toth B (2005) Novel strategies to control mycotoxins in feeds: a review. Acta Vet Hung 53:189–203PubMedGoogle Scholar
  173. Varga J, Rigo K, Teren J (2000) Degradation of ochratoxin A by Aspergillus species. Int J Food Microbiol 59:1–7PubMedGoogle Scholar
  174. Varga J, Peteri Z, Tabori K, Teren J (2005) Degradation of ochratoxin-A and other mycotoxins by Rhizopus isolates. Int J Food Microbiol 99:321–328PubMedGoogle Scholar
  175. Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Adam G, Schatzmayr G, Krska R, Schuhmacher R (2010) Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a novel non-estrogenic metabolite. Appl Environ Microbiol 76(7):2353–2359PubMedCentralPubMedGoogle Scholar
  176. Ward OP (1989) Fermentation biotechnology. Prentice Hall, Englewood CliffsGoogle Scholar
  177. Wegst W, Lingens F (1983) Bacterial degradation of ochratoxin A. FEMS Microbiol Lett 17:341–344Google Scholar
  178. Xiao H, Madhyastha S, Marquardt RR, Li S, Vodela JK, Frohlich AA, Kemppainen BW (1996) Toxicity of ochratoxin A, its opened lactone form and several of its analogs: structure-activity relationships. Toxicol Appl Pharmacol 137(2):182–192PubMedGoogle Scholar
  179. Yamada A, Kishi H, Sugihama K, Hatta T, Nakamura K, Masai E, Fukuda M (1998) Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 64:2006–2012PubMedCentralPubMedGoogle Scholar
  180. Yiannikouris A, André G, Buléon A, Jeminet G, Canet I, François J, Bertin G, Jouany JP (2004a) Comprehensive conformational study of key interactions involved in zearalenone complexation with β-D-glucans. Biomacromolecules 5(6):2176–2185PubMedGoogle Scholar
  181. Yiannikouris A, Francois J, Poughon L, Dussap CG, Bertin G, Jeminet G, Jouany JP (2004b) Adsorption of Zearalenone by beta-D-glucans in the Saccharomyces cerevisiae cell wall. J Food Protect 67:1195–1200Google Scholar
  182. Yiannikouris A, Francois J, Poughon L, Dussap CG, Bertin G, Jeminet G, Jouany JP (2004c) Alkali extraction of beta-d-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J Agric Food Chem 52:3666–3673PubMedGoogle Scholar
  183. Yiannikouris A, François J, Poughon L, Dussap C-G, Jeminet G, Bertin G, Jouany JP (2004d) Complexation of zearalenone with β-D-glucans isolated from the cell wall of Saccharomyces cerevisiae: study of the influence of pH on model β-D-glucans. J Food Protect 67(12):2741–2746Google Scholar
  184. Young JC, Zhou T, Yu H, Zhu H, Gong J (2007) Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol 45:136–143PubMedGoogle Scholar
  185. Zhang XB, Ohta Y (1991) Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci 74:1477–1481PubMedGoogle Scholar
  186. Zhao LH, Guan S, Gao X, Ma QG, Lei YP, Bai XM, Ji C (2010) Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J Appl Microbiol 110:147–155PubMedGoogle Scholar
  187. Zinedine A, Faid M, Benlemlih M (2005) In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int J Agric Biol 7:67–70Google Scholar
  188. Zjalic S, Reverberi M, Ricelli A, Granito VM, Fanelli C, Fabbri AA (2006) Trametes versicolor: a possible tool for aflatoxin control. Int J Food Microbiol 107:243–249PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  1. 1.Food Toxicology & Contaminants DepartmentNational Research CentreCairoEgypt

Personalised recommendations