Annals of Microbiology

, Volume 65, Issue 2, pp 611–629 | Cite as

Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India

  • Ajar Nath Yadav
  • Priyanka Verma
  • Murugan Kumar
  • Kamal K. Pal
  • Rinku Dey
  • Alka Gupta
  • Jasdeep Chatrath Padaria
  • Govind T. Gujar
  • Sudheer Kumar
  • Archna Suman
  • Radha Prasanna
  • Anil K. SaxenaEmail author
Original Article


The diversity of culturable, aerobic and heterotrophic Bacillus and Bacillus-derived genera (BBDG) was investigated in various extreme environments (including thermal springs, cold deserts, mangroves, salt lakes, arid regions, salt pans and acidic soils) of India. Heat treatment followed by enrichment in different media led to a total of 893 bacterial isolates. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes AluI, MspI and HaeIII led to the clustering of these isolates into 12–74 groups for the different sites at 75 % similarity index, adding up to 559 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 392 bacilli, grouped in two families, Bacillaceae (89.03 %) and Paenibacillaceae (10.97 %), and included 13 different genera with 75 distinct species. It was found that among the thirteen genera, nine (Bacillus, Halobacillus, Lysinibacillus, Oceanobacillus, Pontibacillus, Salinibacillus, Sediminibacillus, Thalassobacillus and Virgibacillus) belonged to Bacillaceae and four (Ammoniphilus, Aneurinibacillus, Brevibacillus and Paenibacillus) belonged to Paenibacillaceae. Novel isolates tolerant to low and high pH and temperature, salt and low moisture were identified. The major outcome of the present investigation was the identification of niche-specific species and also the ubiquitous presence of selected species of BBDG, which illustrate the diversity and pervasive nature of BBDG in extreme environments.


ARDRA Bacillus Bacillus derived genera 16S rRNA gene Extreme habitats 



The authors are grateful to the Division of Microbiology, Indian Agricultural Research Institute (IARI), New Delhi and the National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research for providing the facilities and financial support to undertake these investigations. There are no conflicts of interest.


The experiments undertaken comply with the current laws of India, the country where the investigation was undertaken.


  1. Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbnate C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Sptizberg, Svalbard. FEMS Microbiol Ecol 59:255–264CrossRefPubMedGoogle Scholar
  2. Ash C, Farrow AE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206CrossRefGoogle Scholar
  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38:46–51CrossRefGoogle Scholar
  4. Chen YG, Zhang YQ, Xiao HD, Liu ZX, Yi LB, Shi JX, Zhi XY, Cui XL, Li WJ (2009) Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Bacteriol 59:1635–1639CrossRefGoogle Scholar
  5. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122CrossRefGoogle Scholar
  6. Cihan AC, Tekin N, Ozcan B, Cokmus C (2012) The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA Gene sequences and ARDRA analyses isolated from geothermal regions of turkey. Braz J Microbiol 309–324Google Scholar
  7. Claus D, Berkeley RCW (1986) Genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. The Williams and Wilkins, Baltimore, pp 1105–1140Google Scholar
  8. Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702CrossRefGoogle Scholar
  9. Doran PT, Fritsen CH, McKay CP, Priscu JC, Adams EE (2003) Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. Proc Natl Acad Sci U S A 100:26–31CrossRefPubMedCentralPubMedGoogle Scholar
  10. Doran PT, Fritsen CH, Murray AE, Kenig F, McKay C, Kyne JD (2008) Entry approach into pristine ice-sealed lakes-Lake Vida, East Antarctica, a model ecosystem. Limnol Oceanog Methods 6:542–547CrossRefGoogle Scholar
  11. Dwivedi V, Sangwan N, Nigam A, Garg N, Niharika N, Khurana P, Khurana JP, Lal R (2012) Draft genome sequence of Thermus sp. Strain RL, isolated from a hot water spring located atop the Himalayan ranges at Manikaran, India. J Bacteriol 194:3534CrossRefPubMedCentralPubMedGoogle Scholar
  12. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853CrossRefPubMedCentralPubMedGoogle Scholar
  13. Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A (2009) Diversity and phylogeny of culturable spore forming bacilli isolated from marine sediments. J Basic Microbiol 49:S13–S23CrossRefPubMedGoogle Scholar
  14. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  15. Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manachini PL, Stackebrandt E (2001) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Anderson et al. 1995), amendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455CrossRefPubMedGoogle Scholar
  16. Freitas D, Reis M, Lima-Bittencourt C, Costa P, Assis P, Chartone-Souza E, Nascimento A (2008) Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res Notes 1:92CrossRefPubMedCentralPubMedGoogle Scholar
  17. Ghosh A, Dey N, BeraA TA, Sathyaniranjan KB, Chakrabarti KB, Chattopadhyay D (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Systems 6:1–11. doi: 10.1186/1746-1448-6-1 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Goto K, Fujita R, Kato Y, Asahara M, Yokota A (2004) Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 54:419–27CrossRefPubMedGoogle Scholar
  19. Hashim SO, Delgado O, Hatti-Kaul R, Mulaa FJ, Mattiasson B (2004) Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnol Lett 26:823–828CrossRefPubMedGoogle Scholar
  20. Hengstmann U, Chin K, Janssen PH, Liesack W (1999) Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from anoxic rice paddy soil. Appl Environ Microbiol 511:5050–5058Google Scholar
  21. Heyndrickx M, Lebbe L, Kersters K, De Vos P, Forsyth G, Logan NA (1998) Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). amended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106CrossRefGoogle Scholar
  22. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50CrossRefGoogle Scholar
  23. Khan M, Patel CB (2007) Plant growth promoting effect of Bacillus firmus strain NARS1 isolated from central Himalayan region of India on Cicer arientnum at low temperature. Egypt Afr Crop Sci Soc 8:1179–1181Google Scholar
  24. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2013) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol. doi: 10.1007/s13213-013-0709-7.
  25. Larkin JM, Stokes JL (1966) Isolation of psychrophilic species of Bacillus. J Bacteriol 915:1667–1671Google Scholar
  26. Liu ZL, Sinclair JB (1992) Population dynamics of Bacillus megaterium strain B153-2-2 in the rhizosphere of soybean. Phytopathology 82:1297–1301CrossRefGoogle Scholar
  27. Llarch A, Logan NA, Castellv J, Prieto MJ, Guinea J (1997) Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island, South Shetland archipelago. Microb Ecol 34:58–65CrossRefPubMedGoogle Scholar
  28. Miranda CA, Martins OB, Clementino MM (2008) Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie Van Leeuwenhoek 93:297–304CrossRefPubMedGoogle Scholar
  29. Mishra RR, Swain MR, Dangar TK, Thatoi H (2012) Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Rev Biol Trop 60:909–924PubMedGoogle Scholar
  30. Mohamed EAH, Abe M, Ghanem KM, Abdel-Fattah YR, Nakagawa Y, El-Helow ER (2006) Diversity of Bacillus genotypes in soil samples from El-Omayed biosphere reserve in Egypt. J Cult Collect 5:78–84Google Scholar
  31. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  32. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  33. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273CrossRefPubMedCentralPubMedGoogle Scholar
  34. Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271CrossRefPubMedGoogle Scholar
  35. Niimura Y, Koh E, Yanagida F, Suzuki K, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic spore forming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301CrossRefGoogle Scholar
  36. Noguchi H, Uchino M, Shida O, Takano K, Nakamura LK, Komagata K (2004) Bacillus vietnamensis sp. nov., amoderately halo tolerant, aerobic, endo spore-forming bacterium isolated from Vietnamese fish sauce. Int J Syst Evol Microbiol 54:2117–2120CrossRefPubMedGoogle Scholar
  37. Oguntoyinbo FA, Huch M, Cho GS, Schillinger U, Holzapfel WH, Sanni AI, Franz CM (2010) Diversity of Bacillus species isolated from okpehe, a traditional fermented soup condiment from Nigeria. J Food Prot 73:870–878PubMedGoogle Scholar
  38. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from different extreme environments. Biosci Biotechnol Biochem 77:1474–1480CrossRefPubMedGoogle Scholar
  39. Paulino-Lima IG, Azua-Bustos A, Vicuna R, Gonzalez-Silva C, Salas L, Teixeira L, Rosado A, Leitao AC, Lage C (2013) Isolation of UVC-tolerant bacteria from the hyperarid Atacama desert, Chile. Microb Ecol 65:325–335CrossRefPubMedGoogle Scholar
  40. Perez C, Munoz-Garay C, Portugal LC, Sanchez J, Gill SS, Soberon M, Bravo A (2007) Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9:2931–2937CrossRefPubMedCentralPubMedGoogle Scholar
  41. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram positive bacteria. Trends Genet 11:217–218CrossRefPubMedGoogle Scholar
  42. Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society of Microbiology, Washington, pp 3–16Google Scholar
  43. Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 C in Calcite Springs, yellowstone national park: another environment where the Aquificales and“ Korarchaeota” coexist. Extremophiles 4:61–67PubMedGoogle Scholar
  44. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101CrossRefPubMedGoogle Scholar
  45. Sahay H, Singh S, Kaushik R, Saxena AK, Arora DK (2011) Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India. Biologia 66:741–747CrossRefGoogle Scholar
  46. Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hyper saline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217CrossRefPubMedGoogle Scholar
  47. Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714CrossRefPubMedGoogle Scholar
  48. Saitou N, Nei M (1987) The neighbor-joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  49. Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hyper saline anoxic sediments. Saline Systems 4:1–11. doi: 10.1186/1746-1448-4-8 CrossRefGoogle Scholar
  50. Schlesner H, lawson PA, collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431PubMedGoogle Scholar
  51. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946CrossRefPubMedGoogle Scholar
  52. Shivaji S, Chaturvedi P, Reddy GSN, Suresh K (2005) Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int J Syst Evol Microbiol 55:1083–1088CrossRefPubMedGoogle Scholar
  53. Shivaji S, Kiran MD, Chintalapati S (2007) Perception and transduction of low temperature in bacteria. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 194–207CrossRefGoogle Scholar
  54. Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA, Paul JH, Moore ER, Jurtshuk P Jr (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41:84–88CrossRefPubMedGoogle Scholar
  55. Singh AK, Tripathi BM, Sahay H, Singh RN, Kaushik R, Saxena AK, Arora DK (2010) Biochemical and molecular characterization of thermo-alkali tolerant xylanase producing bacteria from thermal springs of Manikaran. Indian J Microbiol 50:2–9. doi: 10.1007/s12088-010-0071-4 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Smith SA, Benardini JN, Strap JL, Crawford RL (2009) Diversity of aerobic and facultative alkalitolerant and halo tolerant endo spore formers in soil from the Alvord Basin, Oregon. Syst Appl Microbiol 32:233–244CrossRefPubMedGoogle Scholar
  57. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496CrossRefGoogle Scholar
  58. Srinivas TNR, Rao SN, Reddy PVV, Pratibha MS, Sailaja B, Kavya B, Kishore KH, Begum Z, Singh SM, Shivaji S (2009) Bacterial diversity and bio prospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic. Curr Microbiol 59:537–54CrossRefPubMedGoogle Scholar
  59. Suihko ML, Stackebrandt E (2003) Identification of aerobic mesophilic Bacilli isolated from board and paper products containing recycled fibres. J Appl Microbiol 94:25–34CrossRefPubMedGoogle Scholar
  60. Tambekar DH, Dhundale VR (2012) Studies on the physiological and cultural diversity of bacilli characterized from Lonar lake (MS) India. Biosci Discov 3:34–39Google Scholar
  61. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.2. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–7680CrossRefPubMedCentralPubMedGoogle Scholar
  63. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus sp. Appl Environ Microbiol 53:1263–1266PubMedCentralPubMedGoogle Scholar
  64. Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218CrossRefPubMedGoogle Scholar
  65. Vardhan S, Kaushik R, Saxena AK, Arora DK (2011) Restriction analysis and partial sequencing of the 16S rRNA gene as index for rapid identification of Bacillus species. Antonie Van Leeuwenhoek 99:283–296CrossRefPubMedGoogle Scholar
  66. Vargas-Ayala R, Rodriguez-Kaban R, Morgan-Jones G, McInroy JA, Kloepper JW (2000) Shifts in soil microflora induced by velvet bean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biol Control 17:11–22CrossRefGoogle Scholar
  67. Ventosa A, Marquez MC, Garabito MJ, Arahal DR (1998) Moderately halophilic gram-positive bacterial diversity in hyper saline environments. Extremophiles 2:297–304CrossRefPubMedGoogle Scholar
  68. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226Google Scholar
  69. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212CrossRefPubMedGoogle Scholar
  70. Waino M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831CrossRefPubMedGoogle Scholar
  71. Wang L, Liu WY, Gu ZJ, Chen SF, Yang SS (2010) Oceanobacillus manasiensis sp. nov., a moderately halophilic bacterium isolated from the salt lakes of Xinjiang, China. J Microbiol 48:312–317CrossRefPubMedGoogle Scholar
  72. Wisotzkey JD, Jurtshuk JRP, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269CrossRefPubMedGoogle Scholar
  73. Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106CrossRefPubMedGoogle Scholar
  74. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2004) Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the yellow sea in Korea. Int J Syst Evol Microbiol 54:803–808CrossRefPubMedGoogle Scholar
  75. Yoon J-H, Kang S-J, Schumann P, Oh T-K (2010) Jeotgalibacillus salarius sp. nov., isolated from a marine saltern, and reclassification of Marinibacillus marinus and Marinibacillus campisalis as Jeotgalibacillus marinus comb. nov. and Jeotgalibacillus campisalis comb. nov., respectively. Int J Syst Evol Microbiol 60:15–20CrossRefPubMedGoogle Scholar
  76. Yousuf B, Sanadhya P, Keshri J, Jha B (2012) Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150–164CrossRefPubMedCentralPubMedGoogle Scholar
  77. Zaitsev GM, Tsitko IV, Rainey FA, Trotsenko YA, Uotila JS, Stackebrandt E, Salkinoja-Salonen MS (1998) New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. Int J Syst Bacteriol 48:151–163CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  • Ajar Nath Yadav
    • 1
  • Priyanka Verma
    • 1
  • Murugan Kumar
    • 1
  • Kamal K. Pal
    • 2
  • Rinku Dey
    • 2
  • Alka Gupta
    • 5
  • Jasdeep Chatrath Padaria
    • 3
  • Govind T. Gujar
    • 4
  • Sudheer Kumar
    • 6
  • Archna Suman
    • 1
  • Radha Prasanna
    • 1
  • Anil K. Saxena
    • 1
    Email author
  1. 1.Division of Microbiology, Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Directorate of Groundnut ResearchJunagadhIndia
  3. 3.National Research Centre for Plant BiotechnologyNew DelhiIndia
  4. 4.Division of Entomology, Indian Agricultural Research InstituteNew DelhiIndia
  5. 5.Central Plantation Crops Research InstituteKasargodIndia
  6. 6.National Bureau of Agriculturally Important MicroorganismsKusmaur, Maunath BhanjanIndia

Personalised recommendations