Annals of Microbiology

, Volume 64, Issue 4, pp 1493–1503 | Cite as

Characterization of a native cellulase activity from an anaerobic thermophilic hydrogen-producing bacterium Thermosipho sp. strain 3

  • Laura Dipasquale
  • Ida Romano
  • Gianluca Picariello
  • Valeria Calandrelli
  • Licia Lama
Original Article


A bacterial strain, designated as strain 3 and identified as a member of the Thermosipho species on the basis of its phenotypic and genotypic characteristics, was isolated from a deep sea hydrothermal vent. Sequence analysis of the 16S rRNA gene revealed that its closest neighbor was Thermosipho africanus (99.5 %). This isolate Thermosipho sp. strain 3 (DSM 27729), a thermophilic, anaerobic, fermentative hydrogen-producing bacterium, produced a thermostable endocellulase that hydrolyzes carboxymethylcellulose (CMC) and β-glucan. The cellulase was purified and its activity characterized. The estimated molecular weight of the protein was about 40 kDa as determined by gel-filtration chromatography, SDS-PAGE and zymogram analyses. The optimal cellulase activity was at pH 5.5 and at a temperature of 80 °C. The enzyme was thermostable with about 50 % residual activity after 48 h and 4 h at 60 °C and 70 °C, respectively. Interestingly, endocellulase activity was increased about 2-fold by 5 mM MnCl2. MALDI-TOF PMF and the N-terminal amino acid sequence analyses of the purified enzyme revealed the extensive homology of the protein with a glycoside hydrolase family protein from Thermosipho africanus (NCBI protein accession number: 419759359; UniProt: K2PFP0).


Hydrogen Cellulase Carboxymethylcellulose Thermophilic Hydrothermal vent 



This research has been supported by the framework project “Metodologie innovative per la produzione di idrogeno da processi biologici” of the Italian Ministry for Education, University and Scientific Research (F.I.S.R. D.M. 17/02/2002). The authors thank Dr. Javier Pascual for phylogenetic analyses.


  1. Andreaus J, Campos R, Gübitz G, Cavaco-Paulo A (2000) Influence of cellulases on indigo backstaining. Text Res J 70:628–632CrossRefGoogle Scholar
  2. Antoine E, Cilia V, Meunier JR, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123PubMedCrossRefGoogle Scholar
  3. Arai T, Araki R, Tanaka A, Karita S, Kimura T, Sakka T, Ohmiya K (2003) Characterization of a cellulase containing a family 30 carbohydrate-binding module (CBM) derived from Clostridium thermocellum CelJ: importance of the CBM to cellulose hydrolysis. J Bacteriol 185:504–512PubMedCentralPubMedCrossRefGoogle Scholar
  4. Au KS, Chan KY (1987) Purification and properties of the endo-1,4-β-glucanase from Bacillus subtilis. J Gen Microbiol 133:2155–2162Google Scholar
  5. Bedford MR (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155CrossRefGoogle Scholar
  6. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58PubMedCrossRefGoogle Scholar
  7. Bernfeld P (1955) Amylases α and β. Methods Enzymol 1:149–158CrossRefGoogle Scholar
  8. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383PubMedCrossRefGoogle Scholar
  9. Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781PubMedCentralPubMedGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  11. Chhabra SR, Kelly RM (2002) Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Lett 531:375–380PubMedCrossRefGoogle Scholar
  12. Christakopoulos P, Hatzinikolaou DG, Fountoukidis G, Kekos D, Claeyssens M, Macris BJ (1999) Purification and mode of action of an alkali-resistant endo-1,4-β-glucanase from Bacillus pumilus. Arch Biochem Biophys 1:61–66CrossRefGoogle Scholar
  13. Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13CrossRefGoogle Scholar
  14. Figueiredo IM, Pereira NR, Efraim P, García NH, Rodrigues NR, Marsaioli A Jr, Marsaioli AJ (2006) 1H NMR, a rapid method to monitor organic acids during cupuassu (Theobroma grandiflorum Spreng) processing. J Agric Food Chem 54:4102–4106PubMedCrossRefGoogle Scholar
  15. Goyal AK, Eveleigh DE (1996) Cloning, sequencing and analysis of the ggh-A gene encoding a 1,4-beta-D-glucan glucohydrolase from Microbispora bispora. Gene 172:93–98PubMedCrossRefGoogle Scholar
  16. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146Google Scholar
  17. Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, Ito S (2002) Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta 1570:174–180PubMedCrossRefGoogle Scholar
  18. Haros M, Rosell CM, Benedito C (2002) Improvement of flour quality through carbohydrases treatment during wheat tempering. J Agric Food Chem 50:4126–4130PubMedCrossRefGoogle Scholar
  19. Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37CrossRefGoogle Scholar
  20. Kim H, Pack MY (1988) Endo-β-1,4-glucanase encoded by Bacillus subtilis gene cloned in Bacillus megaterium. Enzyme Microb Technol 10:347–351CrossRefGoogle Scholar
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  22. Kuwabara T, Kawasaki A, Uda I, Sugai A (2011) Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int J Syst Evol Microbiol 61:1622–1627PubMedCrossRefGoogle Scholar
  23. L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334Google Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  25. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC, Lee JW (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99:378–386PubMedCrossRefGoogle Scholar
  26. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical applications. Int J Hydrogen Energy 29:173–185CrossRefGoogle Scholar
  27. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642PubMedCrossRefGoogle Scholar
  28. Lynd LR (1989) Production of ethanol from lignocellulosic materials using thermophilic bacteria: critical evaluation of potential and review. Adv Biochem Eng/Biot 38:1–52Google Scholar
  29. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCentralPubMedCrossRefGoogle Scholar
  30. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038PubMedGoogle Scholar
  31. Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Primalco Ltd. Biotec (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb Technol 34:332–341CrossRefGoogle Scholar
  32. Naumoff DG (2001) β-fructosidase superfamily: homology with some α-l-arabinases and β-d-xylosidases. Proteins Struct Funct Genet 42:66–76PubMedCrossRefGoogle Scholar
  33. Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435PubMedCrossRefGoogle Scholar
  34. Ozaki K, Ito S (1991) Purification and properties of an acid endo-β-1,4-glucanase from Bacillus sp. KSM-330. J Gen Microbiol 137:41–48PubMedCrossRefGoogle Scholar
  35. Podosokorskaya OA, Kublanov IV, Reysenbach AL, Kolganova TV, Bonch-Osmolovskaya EA (2011) Thermosipho affectus sp. nov., a novel thermophilic anaerobic cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 61:1160–1164PubMedCrossRefGoogle Scholar
  36. Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 137–140:207–219PubMedGoogle Scholar
  37. Ravot G, Ollivier B, Patel BKC, Magot M, Garcia JL (1996) Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulphate as an electron acceptor. Int J Syst Bacteriol 46:321–323CrossRefGoogle Scholar
  38. Rixon JE, Ferreira LM, Durrant AJ, Laurie JI, Hazlewood GP, Gilbert HJ (1992) Characterization of the gene celD and its encoded product 1,4-beta-d-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa. Biochem J 285:947–955PubMedCentralPubMedGoogle Scholar
  39. Robson LM, Chambliss GH (1989) Cellulases of bacterial origin. Enzyme Microb Technol 11:626–644CrossRefGoogle Scholar
  40. Romano I, Manca MC, Lama L, Nicolaus B, Gambacorta A (1993) A method for antibiotic assay on Sulfolobales. Biotechnol Tech 7:439–440CrossRefGoogle Scholar
  41. Romano I, Lama L, Orlando P, Nicolaus B, Giordano A, Gambacorta A (2007) Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt. Extremophiles 11:789–796PubMedCrossRefGoogle Scholar
  42. Romano I, Dipasquale L, Orlando P, Lama L, d’Ippolito G, Pascual J, Gambacorta A (2010) Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles 14:233–240PubMedCrossRefGoogle Scholar
  43. Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660PubMedCrossRefGoogle Scholar
  44. Skopec CE, Himmel ME, Matthews JF, Brady JW (2003) Energetics for displacing a single chain from the surface of microcrystalline cellulose into the active site of Acidothermus cellulolyticus Cel5A. Protein Eng 16:1005–1015PubMedCrossRefGoogle Scholar
  45. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17PubMedCrossRefGoogle Scholar
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  47. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in the enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780PubMedCentralPubMedGoogle Scholar
  48. Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRefGoogle Scholar
  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  50. Urios L, Cueff-Gauchard V, Pignet P, Postec A, Fardeau ML, Ollivier B, Barbier G (2004) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957PubMedCrossRefGoogle Scholar
  51. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301CrossRefGoogle Scholar
  52. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRefGoogle Scholar
  53. Ye XY, Ng TB, Cheng KJ (2001) Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. Int J Biochem Cell Biol 33:87–94PubMedCrossRefGoogle Scholar
  54. Yin LJ, Huang PS, Lin HH (2010) Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. J Agric Food Chem 58:9833–9837PubMedCrossRefGoogle Scholar
  55. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  56. Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456PubMedCentralPubMedCrossRefGoogle Scholar
  57. Zheng B, Yang W, Wang Y, Feng Y, Lou Z (2009) Crystallization and preliminary crystallographic analysis of thermophilic cellulase from Fervidobacterium nodosum Rt17-B1. Acta Crystallogr Sect F: Struct Biol Cryst Commun 65:219–222CrossRefGoogle Scholar
  58. Zheng B, Yang W, Wang Y, Lou Z, Feng Y (2011) Influence of the N-terminal peptide on the cocrystallization of a thermophilic endo-β-1,4-glucanase with polysaccharide substrates. Acta Crystallogr Sect F: Struct Biol Cryst Commun 67:1218–1220CrossRefGoogle Scholar
  59. Zheng B, Yang W, Zhao X, Wang Y, Lou Z, Rao Z, Feng Y (2012) Crystal structure of hyperthermophilic endo-β-1,4-glucanase: implications for catalytic mechanism and thermostability. J Biol Chem 287:8336–8346PubMedCentralPubMedCrossRefGoogle Scholar
  60. Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2014

Authors and Affiliations

  • Laura Dipasquale
    • 1
  • Ida Romano
    • 1
  • Gianluca Picariello
    • 2
  • Valeria Calandrelli
    • 1
  • Licia Lama
    • 1
  1. 1.Institute of Biomolecular ChemistryNational Council of ResearchPozzuoliItaly
  2. 2.Institute of Food ScienceNational Council of ResearchAvellinoItaly

Personalised recommendations