Annals of Microbiology

, Volume 64, Issue 3, pp 1413–1422 | Cite as

Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew

Original Article


Endophytic fungi represent an under explored resource of novel lead compounds and have the capacity to produce diverse classes of plant secondary metabolites. Here, we investigated the endophytic fungal diversity of taxol-producing endophytes from Taxus baccata L. ssp. wallichiana (Zucc.) Pilger and also tested the antimitogenic effect of fungal taxol using potato disc tumor assay. A total of 60 fungal endophytes were isolated from the inner bark (phloem-cambium) of T. baccata ssp. wallichiana, collected from different locations of the northern Himalayan region. Two key genes, DBAT (10-deacetylbaccatin III-10-O-acetyl transferase) and BAPT (C-13 phenylpropanoid side chain-CoA acyltransferase), involved in taxol biosynthesis were used as molecular markers for the screening of taxol-producing strains. Five representative species gave positive amplification hits by molecular marker screening with the bapt gene. These fungi were characterized and identified based on morphological and molecular identification. The taxol-producing capability of these endophytic fungi was validated by HPLC-MS. Among the five taxol-producing fungi, the highest yield of taxol was found to be 66.25 μg/l by Fusarium redolens compared with those of the other four strains.


Taxus baccata Taxol Endophytic fungi Fusarium spp. Microdiplodia sp. Paraconiothyrium brasiliense Agrobacterium tumefaciens 


  1. Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13Google Scholar
  2. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59PubMedCrossRefGoogle Scholar
  3. Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134CrossRefGoogle Scholar
  4. Coker PS, Radecke J, Guy C, Camper ND (2003) Potato disc tumour induction assay: a multiple mode of drug action assay. J Phytomed 10:133–138CrossRefGoogle Scholar
  5. Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97PubMedCentralPubMedCrossRefGoogle Scholar
  6. Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143CrossRefGoogle Scholar
  7. Flores-Bustamante ZR, Rivera-Orduna FN, Martizen-Cardenas A, Flores-Cotera LB (2010) Microbial Paclitaxel: advances and perspectives. J Antibiot 63:460–467PubMedCrossRefGoogle Scholar
  8. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides, Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724CrossRefGoogle Scholar
  9. Holmes FA, Walters RS, Theriault RL, Forman AD, Newton LK, Raber MN, Buzdar AU, Frye DK, Hortabagyi GN (1991) Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797–1805PubMedCrossRefGoogle Scholar
  10. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  11. Li J, Hu Y, Chen W, Lin Z (2006) Identification and pilot study of Taxus endophytic fungi’s taxol-producing correlation gene BAPT. Biotechnol Bull S1:356–371Google Scholar
  12. Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177PubMedCrossRefGoogle Scholar
  13. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 111:273–279PubMedCrossRefGoogle Scholar
  14. Mc Laughlin JL, Rogers LL (1998) The use of biological assays to evaluate botanicals. Drug Inform J 32:513–524Google Scholar
  15. Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A (2012) Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata growing in Iran. FEMS Microbiol Lett 328:122–129PubMedCrossRefGoogle Scholar
  16. Nadeem M, Rikhari HC, Anil K, Palni LMS, Nandi SK (2002) Taxol content in the bark of Himalayan Yew in relation to tree age and sex. Phytochemistry 60:627–631PubMedCrossRefGoogle Scholar
  17. Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Total synthesis of taxol. Nature 367:630–634PubMedCrossRefGoogle Scholar
  18. Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol Res 107:439–444PubMedCrossRefGoogle Scholar
  19. Pezzuto J (1996) Taxol production in plant cell culture comes of age. Nat Biotechnol 14:1083PubMedCrossRefGoogle Scholar
  20. Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 17:283–304Google Scholar
  21. Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  22. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalopsis microspora, an endophytic fungus from Taxus wallachiana. Microbiology 142:435–440PubMedCrossRefGoogle Scholar
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  24. Tejesvi M, Nahesh B, Nalini M, Prakash H, Kini K, Subbiah V, Shetty H (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W & A (Combretaceae). World J Microbiol Biotechnol 21:1535–1540CrossRefGoogle Scholar
  25. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedCrossRefGoogle Scholar
  26. Wheeler NC, Jech K, Masters S, Brobst SW, Alvarado AB, Hoover AJ, Snade KM (1992) Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J Nat Prod 55:432–440PubMedCrossRefGoogle Scholar
  27. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322Google Scholar
  28. Yunan JH, Zhang RP, Zhang RG, Guo LX, Wang XW, Luo D, Xie Y, Xie H (2000) Growth inhibiting effects of taxol on human liver cancer in vitro and in nude mice. World J Gastroentrol 6:210–215Google Scholar
  29. Zhang D, Yang Y, Castlebury LA, Cerniglia CE (1996) A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145:261–265PubMedCrossRefGoogle Scholar
  30. Zhang P, Zhou P, Chen J, Yu H, Yu L (2008) Screening of Taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123PubMedCrossRefGoogle Scholar
  31. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Méndez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol 1. Formatex, Badajoz, Spain, pp 567–576Google Scholar
  32. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, Zhou D (2009) Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidate in China. J Appl Microbiol 107:1202–1207PubMedCrossRefGoogle Scholar
  33. Zhao K, Zhao LF, Jin Y, Wei HX, Ping WX, Zhou DP (2008) Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 5:210–217Google Scholar
  34. Zhou X, Wang Z, Jiang K, Wei Y, Lin J, Sun X, Tang K (2007) Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl Biochem Microbiol 43:490–494CrossRefGoogle Scholar
  35. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) Recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2013

Authors and Affiliations

  • Sanjog Garyali
    • 1
  • Anil Kumar
    • 1
  • M. Sudhakara Reddy
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations