Advertisement

Annals of Microbiology

, Volume 64, Issue 3, pp 1405–1411 | Cite as

Bacterioplankton communities in a high-altitude freshwater wetland

  • Jingxu Zhang
  • Xiaoling Zhang
  • Yong LiuEmail author
  • Shuguang XieEmail author
  • Yungen Liu
Original Article

Abstract

Microbial communities play a crucial role in various biogeochemical processes in aquatic ecosystems. However, existing knowledge on microbial communities in the waters of wetlands is still very scant. The objective of the present study was to investigate the bacterioplankton community in the Luoshijiang Wetland, a high-altitude freshwater wetland in the Yunnan-Kweichow Plateau. Water samples were collected from different sites. The bacterioplankton community was characterized using 16S rRNA gene clone library analysis. A spatial variation of the diversity and composition of the bacterioplankton community was observed. Verrucomicrobia and Proteobacteria were the most abundant components. Proteobacteria might play an important role in water self-purification, but the significance of Verrucomicrobia remained unclear. Moreover, Pearson’s correlation analysis showed that Actinobacteria and Gemmatimonadetes were positively correlated with nitrite nitrogen in waters, while Alphaproteobacteria with dissolved phosphorous.

Keywords

Microbial community Luteolibacter Proteobacteria Verrucomicrobia Wetlands Freshwater 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51279001) and (No.41222002).

References

  1. Akiyama M, Shimizu S, Ishijima Y, Naganuma T (2010) Response of microbial community structure to natural and accelerated hydrarch successions in the boreal wetlands in northern Hokkaido, Japan. Limnology 11(3):273–279CrossRefGoogle Scholar
  2. Arnds J, Knittel K, Buck U, Winkel M, Amann R (2010) Development of a16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst Appl Microbiol 33:139–148PubMedCrossRefGoogle Scholar
  3. Cheng W, Zhang JX, Wang Z, Wang M, Xie SG (2013) Bacterial communities in sediments of a drinking water reservoir. Ann Microbiol. doi: 10.1007/s13213-013-0712-z Google Scholar
  4. da Rocha UN, van Elsas JD, van Overbeek LS (2011) Verrucomicrobia subdivision 1 strains display a difference in the colonization of the leek (Allium porrum) rhizosphere. FEMS Microbiol Ecol 78(2):297–305PubMedCrossRefGoogle Scholar
  5. de Figueiredo DR, Pereira MJ, Moura A, Silva L, Barrios S, Fonseca F, Henriques I, Correia A (2007) Bacterial community composition over a dry winter in meso- and eutrophic Portuguese water bodies. FEMS Microbiol Ecol 59(3):638–650PubMedCrossRefGoogle Scholar
  6. Dorador C, Vila I, Witzel KP, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam Appl Limnol 182(2):135–159CrossRefGoogle Scholar
  7. Feng S, Chen C, Wang QF, Zhang XJ, Yang ZY, Xie SG (2013) Characterization of microbial communities in a granular activated carbon-sand dual media filter for drinking water treatment. Int J Environ Sci Technol 10(5):917–922CrossRefGoogle Scholar
  8. Freitas S, Hatosy S, Fuhrman JA, Huse SM, Welch DBM, Sogin ML, Martiny AC (2012) Global distribution and diversity of marine Verrucomicrobia. ISME J 6(8):1499–1505PubMedCentralPubMedCrossRefGoogle Scholar
  9. Humbert JF, Dorigo U, Cecchi P, Le Berre B, Debroas D, Bouvy M (2009) Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ Microbiol 11(9):2339–2350PubMedCrossRefGoogle Scholar
  10. Jiang F, Li WJ, Xiao MC, Dai J, Kan WJ, Chen L, Li WX, Fang CX, Peng F (2012) Luteolibacter luojiensis sp nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 62:2259–2263PubMedCrossRefGoogle Scholar
  11. Johnson RJ, Smith BE, Rowland SJ, Whitby C (2013) Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440. Int Biodeterior Biodegrad 81: SI 3–8Google Scholar
  12. Kadnikov VV, Mardanov AV, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skryabin KG (2012) Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol Ecol 79(2):348–358PubMedCrossRefGoogle Scholar
  13. Kolmonen E, Rantala-Ylinen A, Rajaniemi-Wacklin P, Lepitö LA, Haukka K, Sivonen K (2011) Bacterioplankton community composition in 67 Finnish lakes differs according to trophic status. Aquat Microb Ecol 62:241–250CrossRefGoogle Scholar
  14. Kwon S, Moon E, Kim TS, Hong S, Park HD (2011) Pyrosequencing demonstrated complex microbial communities in a membrane filtration system for a drinking water treatment plant. Microbes Environ 26(2):149–155PubMedCrossRefGoogle Scholar
  15. Liao XB, Chen C, Wang Z, Wan R, Chang CH, Zhang XJ, Xie SG (2013a) Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochem 48(2):312–316CrossRefGoogle Scholar
  16. Liao XB, Chen C, Wang Z, Wan R, Chang CH, Zhang XJ, Xie SG (2013b) Pyrosequencing analysis of bacterial communities in drinking water biofilters receiving influents of different types. Process Biochem 48(4):703–707CrossRefGoogle Scholar
  17. Lindström ES, Vrede K, Leskinen E (2004) Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability. J Plankton Res 26:241–246CrossRefGoogle Scholar
  18. Liu YQ, Yao TD, Jiao NZ, Liu XB, Kang SC, Luo TW (2013a) Seasonal dynamics of the bacterial community in Lake Namco, the largest Tibetan lake. Geomicrobiol J 30(1):17–28CrossRefGoogle Scholar
  19. Liu GF, Zhou JT, Meng XM, Fu SQ, Wang J, Jin RF, Lv H (2013b) Decolorization of azo dyes by marine Shewanella strains under saline conditions. Appl Microbiol Biotechnol 97(9):4187–4197PubMedCrossRefGoogle Scholar
  20. Lu PP, Chen C, Wang QF, Wang Z, Zhang XJ, Xie SG (2013) Phylogenetic diversity of microbial communities in real drinking water distribution systems. Biotechnol Bioprocess Eng 18(1):119–124CrossRefGoogle Scholar
  21. Menon R, Jackson CR, Holland MM (2013) The influence of vegetation on microbial enzyme activity and bacterial community structure in freshwater constructed wetland sediments. Wetlands 33(2):365–378CrossRefGoogle Scholar
  22. Morrissey EM, Jenkins AS, Brown BL, Franklin RB (2013) Resource availability effects on nitrate-reducing microbial communities in a freshwater wetland. Wetlands 33(2):301–310CrossRefGoogle Scholar
  23. Ogugbue CJ, Sawidis T, Oranusi NA (2012) Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol 62(3):1141–1153CrossRefGoogle Scholar
  24. Ohshiro T, Harada N, Kobayashi Y, Miki Y, Kawamoto H (2012) Microbial fucoidan degradation by Luteolibacter algae H18 with deacetylation. Biosci Biotechnol Biochem 76(3):620–623PubMedCrossRefGoogle Scholar
  25. Park J, Baek GS, Woo SG, Lee J, Yang J, Lee J (2013) Luteolibacter yonseiensis sp nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 63:1891–1895PubMedCrossRefGoogle Scholar
  26. Parveen B, Mary I, Vellet A, Ravet V, Debroas D (2013) Temporal dynamics and phylogenetic diversity of free-living and particle-associated Verrucomicrobia communities in relation to environmental variables in a mesotrophic lake. FEMS Microbiol Ecol 83(1):189–201PubMedCrossRefGoogle Scholar
  27. Peralta RM, Ahn C, Gillevet PM (2013) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732PubMedCrossRefGoogle Scholar
  28. Qin P, Mitsch WJ (2009) Wetland restoration and ecological engineering: International conference of wetland restoration and ecological engineering. Ecol Eng 35(4):437–441CrossRefGoogle Scholar
  29. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedCentralPubMedCrossRefGoogle Scholar
  30. Sommaruga R, Casamayor EO (2009) Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshw Biol 54(5):994–1005CrossRefGoogle Scholar
  31. Tang YS, Wang L, Jia JW, Fu XH, Le YQ, Chen XZ, Sun Y (2011) Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover. Soil Biol Biochem 43(3):638–646CrossRefGoogle Scholar
  32. Tang J, Ding X, Wang LM, Xu QR, Yang ZR, Zhao J, Sun Q, Feng S, Zhang J (2012) Effects of wetland degradation on bacterial community in the Zoige Wetland of Qinghai-Tibetan Plateau (China). World J Microbiol Biotechnol 28(2):649–657PubMedCrossRefGoogle Scholar
  33. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267PubMedCentralPubMedCrossRefGoogle Scholar
  34. Wang Y, Wan R, Zhang SY, Xie SG (2012) Anthracene biodegradation under nitrate-reducing conditions and associated microbial community changes. Biotechnol Bioprocess Eng 17(2):371–376CrossRefGoogle Scholar
  35. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72(8):5478–5485PubMedCentralPubMedCrossRefGoogle Scholar
  36. Yoon J, Matsuo Y, Adachi K, Nozawa M, Matsuda S, Kasai H, Yokota A (2008) Description of Persicirhabdus sediminis gen. nov., sp nov., Roseibacillus ishigakijimensis gen. nov., sp nov., Roseibacillus ponti sp nov., Roseibacillus persicicus sp nov., Luteolibacter pohnpeiensis gen. nov., sp nov and Luteolibacter algae sp nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 58:998–1007PubMedCrossRefGoogle Scholar
  37. Zhang SY, Wan R, Wang QF, Xie SG (2011) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad 65(8):1224–1228CrossRefGoogle Scholar
  38. Zhang SY, Wang QF, Xie SG (2012) Bacterial and archaeal community structures in phenanthrene amended aquifer sediment microcosms under oxic and anoxic conditions. Int J Environ Res 6(4):1077–1088Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2013

Authors and Affiliations

  1. 1.College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education)Peking UniversityBeijingChina
  2. 2.Faculty of Environmental Science and Engineering, National Plateau Wetland Research Center of ChinaSouth West Forestry UniversityKunmingChina

Personalised recommendations