Advertisement

Annals of Microbiology

, Volume 64, Issue 1, pp 407–411 | Cite as

Identification and nematicidal activity of bacteria isolated from cow dung

  • Hao Lu
  • Xin Wang
  • Keqin Zhang
  • Youyao Xu
  • Liang Zhou
  • Guohong Li
Short Communication

Abstract

Two hundred and nineteen bacterial strains were isolated from cow dung. Among these, 59 isolates displayed nematicidal activity against the model nematode Caenorhabditis elegans. Of the 59 bacterial strains, 17 killed >90 % of the tested nematodes within 1 h. Based on their 16S rRNA sequences, these 17 strains were identified as Alcaligenes faecalis, Bacillus cereus, Proteus penneri, Providencia rettgeri, Pseudomonas aeruginosa, Pseudomonas otitidis, Staphylococcus sciuri, Staphylococcus xylosus, Microbacterium aerolatum, Pseudomonas beteli. Among these 17 strains, 14 produced volatile organic compound(s) that inhibited the mobility of the C. elegans nematodes. These 14 strains also showed nematicidal activity against a plant pathogenic nematode Meloidogyne incognita. This is the first report demonstrating nematicidal activity for strains in genera Proteus, Providencia and Staphylococcus.

Keywords

Bacteria Cow dung Nematicidal activity 16S rRNA Volatile organic compound 

Notes

Acknowledgments

The work was supported by grants from the “973” Program of China (2013CB127505, 2012CB722208) and the NSFC (30960007), the Young Academic and Technical Leader Raising Foundation of Yunnan Province (2010CI023), and the Program from Yunnan Provincial Company (2010yn17) and the China National Tobacco Corporation (110201002023).

References

  1. Abad P, Gouzy J, Aury JM et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915PubMedCrossRefGoogle Scholar
  2. Ali NI, Siddiqui IA, Shaukat S, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058CrossRefGoogle Scholar
  3. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527PubMedCrossRefGoogle Scholar
  4. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management-organic amendments. Crop Prot 9:847–853CrossRefGoogle Scholar
  7. Gu YQ, Zhou JP, Zou CS, Mo MH, Zhang KQ (2007) Evaluation and identification of potential organic nematocidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575CrossRefGoogle Scholar
  8. Huang Y, Xu CK, Ma L, Zhang KQ, Duan CQ, Mo MH (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422CrossRefGoogle Scholar
  9. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  10. Lin J, Yan XJ, Zheng L, Ma HH, Chen HM (2005) Cytotoxicity and apoptosis induction of some selected marine bacteria metabolites. J Appl Microbiol 99:1373–1382PubMedCrossRefGoogle Scholar
  11. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal database project). Nucleic Acids Res 28:173–174CrossRefGoogle Scholar
  12. McNerney R, Mallard K, Okolo PI, Turner C (2012) Production of volatile organic compounds by mycobacteria. FEMS Microbiol Lett 328:150–156PubMedCrossRefGoogle Scholar
  13. Oka Y, Chet I, Spiegel Y (1993) Control of the rootknot nematode meloidogyne javanica by Bacillus cereus. Biocontrol Sci Technol 3:115–126CrossRefGoogle Scholar
  14. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362PubMedCrossRefGoogle Scholar
  15. Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 8:498–518PubMedCentralPubMedCrossRefGoogle Scholar
  16. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  18. Yang ZS, Li GH, Zhao PJ, Zheng X, Luo SL, Li L, Niu XM, Zhang KQ (2010) Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J Microb Biotechnol 26:2297–2302CrossRefGoogle Scholar
  19. Yang LL, Huang Y, Liu J, Ma L, Mo MH, Li WJ, Yang FX (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie van Leeuwenhoek 102:53–59PubMedCrossRefGoogle Scholar
  20. Zheng LJ, Li GH, Wang XB, Pan WZ, Li L, Lv H, Liu FF, Dang LZ, Mo MH, Zhang KQ (2008) Nematicidal endophytic bacteria obtained from plants. Ann Microbiol 58(4):569–572CrossRefGoogle Scholar
  21. Zhou LJ (2005) Application of GFP on the study of Meloidogyne incogita antagonistic Alcaligenes faecalis. Dissertation, Fujian Agriculture and Forestry University, ChinaGoogle Scholar
  22. Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2013

Authors and Affiliations

  • Hao Lu
    • 1
  • Xin Wang
    • 1
  • Keqin Zhang
    • 1
  • Youyao Xu
    • 1
  • Liang Zhou
    • 1
  • Guohong Li
    • 1
  1. 1.Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityKunmingChina

Personalised recommendations