Annals of Microbiology

, Volume 64, Issue 1, pp 209–218 | Cite as

Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode

  • Sasidharan Nishanth Kumar
  • Bala Nambisan
  • Andikkannu Sundaresan
  • Chellapan Mohandas
  • Ruby John Anto
Original Article


The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H −1H COSY, 1H −13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.


Bacillus cereus Secondary metabolite Purification Antimicrobial 



The authors are grateful to the Indian Council Medical Research (ICMR), Government of India for funding. We thank the Director, CTCRI, for providing facilities for the work.

Supplementary material

13213_2013_653_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)


  1. Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Hettrorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065PubMedGoogle Scholar
  2. Anteunis MJO (1978) The cyclic dipeptides: proper model compounds in peptide research. Bull Chem Soc Belg 87:627–650CrossRefGoogle Scholar
  3. Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, Cherni A (2004) Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol 42:3711–3730PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boszormeny E, Rsek TE, Fodor A, Fodor AM, Szldes FL, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormány A, Pekár S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759CrossRefGoogle Scholar
  5. Chen G, Dunphy GB, Webster JM (1994) Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 4:157–162CrossRefGoogle Scholar
  6. Chen G, Maxwell P, Dunphy GB, Webster JM (1996) Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes. Nematologica 42:124–127CrossRefGoogle Scholar
  7. CLSI, Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898 USAGoogle Scholar
  8. CLSI, Clinical and Laboratory Standards Institute (2008) Reference methods for broth dilution antifungal susceptibility tests of yeasts. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898 USAGoogle Scholar
  9. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318CrossRefGoogle Scholar
  10. De Rosa S, Mitova M, Tommonaro G (2003) Marine bacteria associated with sponge as source of cyclic peptides. Biomol Eng 20:311–316PubMedCrossRefGoogle Scholar
  11. Deepa I, Mohandas C, Makesh KT, Siji JV, Prakash KBS, Babu B (2010) Identification of new entomopathogenic nematodes (EPNs) based on sequences of D2-D3 expansion fragments of the 28SrRNA. J Root Crops 36(2):227–232Google Scholar
  12. Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secrets four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250–254PubMedCrossRefGoogle Scholar
  13. Fdhila F, Vazquez V, Sanchez JL, Riguera R (2003) DD-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66:1299–1301PubMedCrossRefGoogle Scholar
  14. Forst S, Nealson KH (1996) Molecular biology of the symbiotic–pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43PubMedCentralPubMedGoogle Scholar
  15. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp. Bugs that kill bugs. Annu Rev Microbiol 51:47–72PubMedCrossRefGoogle Scholar
  16. Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 75–90Google Scholar
  17. Graz M, Hunt A, Jamie H, Grant G, Milne P (1999) Antimicrobial activity of selected cyclic dipeptides. Pharmazie 54:772–775PubMedGoogle Scholar
  18. Gualtieri M, Aumelasm A, Thaler JO (2009) Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot 62:295–302PubMedCrossRefGoogle Scholar
  19. Guo Q, Guo D, Zhao B, Xu J, Li R (2007) Two cyclic dipeptides from Pseudomonas fluorescens GcM5-1A carried by the pine wood nematode and their toxicities to Japanese black pine suspension cells and seedlings in vitro. J Nematol 39(3):243–247PubMedCentralPubMedGoogle Scholar
  20. Holden MTG, Chhabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg SA, Williams P (1999) Quorem- sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram negative bacteria. Mol Microbiol 33:1254PubMedCrossRefGoogle Scholar
  21. Houston DR, Synstad B, Eijsink VG, Stark MJ, Eggleston IM, van Aalten DM (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47:5713–5720PubMedCrossRefGoogle Scholar
  22. Hsieh PW, Hsu LC, Lai CH, Wu CC, Hwang TL, Lin YK, Wu YC (2009) Evaluation of the bioactivities of extracts of endophytes isolated from Taiwanese herbal plants. World J Microbiol Biotechnol 25:1461–1469CrossRefGoogle Scholar
  23. Hu K, Li J, Wang W, Wu H, Lin H, Webster JM (1998) Comparison of metabolites produced in vitro and in vivo by Photorhabdus luminescens, a bacterial symbiont of the entomopathogenic nematode Heterorhabditis megidis. Can J Microbiol 44:1072–1077CrossRefGoogle Scholar
  24. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59:293–296PubMedCrossRefGoogle Scholar
  25. Ji DJ, Yi YK, Kang GH (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 239:241–248PubMedCrossRefGoogle Scholar
  26. Joyce SA, Brachmann AO, Itamar G, Lea L, Gertrud S, David C, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed 47:1942–1945CrossRefGoogle Scholar
  27. Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077PubMedCrossRefGoogle Scholar
  28. Li J, Chen GH, Wu HM, Webster JM (1995) Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 61:4329–4333PubMedCentralPubMedGoogle Scholar
  29. Li JX, Chen GH, Webster JM (1997) Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can J Microbiol 43:770–773PubMedCrossRefGoogle Scholar
  30. Li X, Sergey D, Ying X, Xiao X, Oi H, Qian P (2006) Antifouling diketopiperazines produced by a deep-sea bacterium. Streptomyces fungicidicus. Biofouling 22:201PubMedCrossRefGoogle Scholar
  31. Marfey P (1984) Determination of D-amino acids. II. Use of a bifunctional reagents, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49:591–596CrossRefGoogle Scholar
  32. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932CrossRefGoogle Scholar
  33. McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DRJ, Engelhardt LM (1991a) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784PubMedCrossRefGoogle Scholar
  34. McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991b) Biologically active metabolites from Xenorhabdus spp. Part 2 Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795PubMedCrossRefGoogle Scholar
  35. Mohandas C, Sheeba M, Firoza AJ, Rajamma P (2007) Bacteria associated with Rhabditis (Oscheius) spp. (Rhabditidae: Nematoda) for the biocontrol of insect pests. Proc Nat Seminar on Achievements and Opportunities in Post harvest Management and Value Addition in Root and Tuber Crops (NSRTC–2), p 195–198Google Scholar
  36. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH (1995) Manual clinic microbiol, vol 6. ASM, Washington, DCGoogle Scholar
  37. Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom ST (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 17:25–31PubMedCrossRefGoogle Scholar
  38. Paul VJ, Frautschy S, Fenical W, Nealson KH (1981) Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect symbiotic bacteria Xenorhabdus spp. J Chem Ecol 7:589–597PubMedCrossRefGoogle Scholar
  39. Prasad C (1995) Bioactive cyclic dipeptides. Peptides 16:151–164PubMedCrossRefGoogle Scholar
  40. Rhee KH (2002) Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol 48:327–331CrossRefGoogle Scholar
  41. Rhee KH (2003) Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J Microbiol Biotechnol 13(6):984–988Google Scholar
  42. Rhee KH (2004) Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int J Antimicrob Agents 24:423–427PubMedCrossRefGoogle Scholar
  43. Rhee KH (2006) In vitro activity of cyclic dipeptides against gram-positive and gram- negative anaerobic bacteria and radioprotective effect on lung cells. J Microbiol Biotechnol 16(1):158–162Google Scholar
  44. Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602–1605PubMedCentralPubMedGoogle Scholar
  45. Rollas S, Kalyoncuoglu N, Sur-Altiner D, Yegenglu Y (1993) 5-(4-Aminophenyl)-4-substituted 2,4-dihydro-3H-1,2,4-triazole-3-thiones: synthesis, antibacterial and antifungal activities. Pharmazie 48:308–309PubMedGoogle Scholar
  46. Rudi A, Kashman Y, Benayahu Y, Schleyer M (1994) Amino acid derivatives from the marine sponge Jaspis digonoxea. J Nat Prod 57:829PubMedCrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. Shin HJ, Mojid Mondol MA, Yu TK, Lee HS, Lee YJ, Jin HJ, Kim JH, Kwon HJ (2010) An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochem Lett 3:194–197CrossRefGoogle Scholar
  49. Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122PubMedCrossRefGoogle Scholar
  50. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW (2003) Anti-hyperglycemic activity of zinc plus cyclo(His-Pro) in genetically diabetic goto-kakizaki and aged rats. Exp Biol Med 228:1338–1345Google Scholar
  51. Stierle AC, Cardellina JH, Strobel GA (1988) Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternate. Proc Natl Acad Sci USA 85(21):8008–8011PubMedCrossRefGoogle Scholar
  52. Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tailliez P, Laroui C, Ginibre N, Paule A, Page S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. Caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. Khanii subsp. nov., P. temperata subsp. Tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperate subsp. thracensis comb. nov. Syst Evol Microbiol 60:1921–1937CrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  56. van der Merwe E, Huang D, Peterson D, Kilian G, Milne PJ, Van de Venter M, Frost C (2008) The synthesis and anticancer activity of selected diketopiperazines. Peptides 29:1305–1311PubMedCrossRefGoogle Scholar
  57. Wang Y, Mueller UG, Clardy J (1999) Antifungal diketopiperazines from symbiotic fungus of fungus-growing ant Cyphomyrmex minutus Antifungal. J Chem Ecol 25(4):245–257Google Scholar
  58. Wang G, Dai S, Chen M, Wu H, Lianwu X, Xiongming L, Li Z (2010) Two diketopiperazine Cyclo(Pro-Phe) isomers from marine bacteria Bacillus subtilis sp. 13-2. Chem Nat Comps 46(4):583–585CrossRefGoogle Scholar
  59. Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K (2004) Cyclo(Lleucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 70:7466–7473PubMedCentralPubMedCrossRefGoogle Scholar
  60. Yang L, Tan R, Wang Q, Huang W, Yinc Y (2002) Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Letts 43:6545–6548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2013

Authors and Affiliations

  • Sasidharan Nishanth Kumar
    • 1
  • Bala Nambisan
    • 1
  • Andikkannu Sundaresan
    • 2
  • Chellapan Mohandas
    • 1
  • Ruby John Anto
    • 3
  1. 1.Division of Crop Protection, Division of Crop UtilisationCentral Tuber Crops Research InstituteThiruvananthapuramIndia
  2. 2.Division of Agroprocessing and Natural ProductsNIISTTrivandrumIndia
  3. 3.Integrated Cancer Research Program, Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia

Personalised recommendations