Annals of Microbiology

, Volume 63, Issue 4, pp 1225–1234 | Cite as

Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain

  • Alex Fernando de Almeida
  • Sâmia Maria Taulk-Tornisielo
  • Eleonora Cano CarmonaEmail author
Original Article


Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.


Candida viswanathii Triacylglycerol Lipase Lipolytic yeast Olive oil 



The authors would like to thank the National Council of Technological and Scientific Development (CNPq) for financial support and for the scholarship awarded to the first author; Dr. Paula Benevides de Morais for providing the yeasts of Cerrado environment; Dr. Dejanira de Franceschi de Angelis for providing the Candida viswanathii strain for this study; and Dr. César R. F. Terrasan for his suggestions on the manuscript.


  1. Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813. doi: 10.1002/ejlt.200900078 CrossRefGoogle Scholar
  2. Antonian E (1988) Recent advances in the purification, characterization and structure determination of lipases. Lipids 23:1101–1106. doi: 10.1007/BF02535273 PubMedCrossRefGoogle Scholar
  3. Azeredo LAI, Gomes PM, Sant’anna GL Jr, Castilho LR, Freire DMG (2007) Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Curr Microbiol 54:361–365. doi: 10.1007/s00284-006-0425-7 PubMedCrossRefGoogle Scholar
  4. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:19–237. doi: 10.1111/j.1574-6976.1997.tb00299.x CrossRefGoogle Scholar
  5. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:357–387. doi: 10.1016/j.plipres.2009.08.005 CrossRefGoogle Scholar
  6. Björkling F, Godtfredsen SV, Kirk O (1991) The future impact of industrial lipases. Tibtech 9:360–363. doi: 10.1016/0167-7799(91)90119-3 CrossRefGoogle Scholar
  7. Bussamara R, Fuentefria AM, Oliveira ES, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Biores Technol 101:268–275. doi: 10.1016/j.biortech.2008.10.063 CrossRefGoogle Scholar
  8. Chang SW, Shieh CJ, Lee GC, Akoh CC, Shaw JF (2006) Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM. J Mol Microb Biotechnol 11:28–40. doi: 10.1159/000092817 CrossRefGoogle Scholar
  9. Corzo G, Revah S (1999) Production and characterization of the lipase from Yarrowia lipolytica 681. Bioresource Technol 70:173–180. doi: 10.1016/S0960-8524(99)00024-3 CrossRefGoogle Scholar
  10. Dalmau E, Montesinos JL, Lotti M, Casas C (2000) Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Technol 26:657–663. doi: 10.1016/S0141-0229(00)00156-3 PubMedCrossRefGoogle Scholar
  11. Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol. doi: 10.1155/2009/562943
  12. Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H (2011) High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate. New Biotechnol 28:756–760. doi: 10.1016/j.nbt.2011.02.002 CrossRefGoogle Scholar
  13. Elibol M, Ozer D (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem 36:325–329. doi: 10.1016/S0032-9592(00)00226-0 CrossRefGoogle Scholar
  14. Fatima Y, Kansal H, Soni P, Banerjee UC (2007) Enantioselective reduction of aryl ketones using immobilized cells of Candida viswanathii. Process Biochem 42:1412–1418. doi: 10.1016/j.procbio.2007.07.010 CrossRefGoogle Scholar
  15. Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J App Microbiol 96:742–749. doi: 10.1111/j.1365-2672.2004.02190.x CrossRefGoogle Scholar
  16. Fickers P, Destain J, Thornart P (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543. doi: 10.1016/j.femsyr.2004.09.004 PubMedCrossRefGoogle Scholar
  17. Gulati R, Isar J, Kumar V, Prasad AK, Parmar VS, Saxena RK (2005) Production of a novel alkaline lipase by Fusarium globulosum using neem oil, and its applications. Pure App Chem 77:251–262. doi: 10.1351/pac200577010251 CrossRefGoogle Scholar
  18. Gutarra MLE, Mateus GG, Castilho LR, Freire DMG (2007) Inoculum strategies for Penicillium simplicissimum lipase production by solid-state fermentation using a residue from Babassu oil industry. J Chem Technol Biotechnol 82:313–318. doi: 10.1002/jctb.1674 CrossRefGoogle Scholar
  19. Hankin L, Anagnostakis SG (1975) The use of solid media for detection of enzyme production by fungi. Mycology 67:597–607CrossRefGoogle Scholar
  20. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. App Biochem Biotechnol 118:155–170. doi: 10.1385/ABAB:118:1-3:155 CrossRefGoogle Scholar
  21. Kalo P, Kemppinem A (2003) Triglycerides/structures and properties. Encyclopedia of Food Sciences and Nutrition. Elsevier 5857-5868Google Scholar
  22. Kamzolova SV, Morgunov IG, Aurich A (2005) Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technol Biotechnol 43:113–122Google Scholar
  23. Kok RG, Nudel CB, Gonzalez RH, Nugteren-Roodzant IM, Hellingwerf KJ (1996) Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipa expression and degradation of LipA. J Bacteriol 178:6025–6035PubMedGoogle Scholar
  24. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study. Elsevier, San DiegoGoogle Scholar
  25. Lakshmi BB, Kangueane P, Abraham B, Pennathur G (1999) Effect of vegetable oils in the secretion of lipase from Candida rugosa (DSM 2031). Lett Appl Microbiol 29:66–70. doi: 10.1046/j.1365-2672.1999.00578.x CrossRefGoogle Scholar
  26. Leal MCMR (2000) Utilização de enzimas hidrolíticas no tratamento de resíduos da indústria de laticínios. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  27. Li Q, Yan Y (2010) Production of biodiesel catalysed by immobilization Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. App Energy 87:3148–3154. doi: 10.1016/j.apenergy.2010.02.032 CrossRefGoogle Scholar
  28. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 265-275Google Scholar
  29. Mafakher L, Mirbagheri M, Darvishi F, Nahvi I, Zarkesh-Esfahani H, Emtiazi G (2010) Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater. New Biotechnol 27:337–341. doi: 10.1016/j.nbt.2010.04.006 CrossRefGoogle Scholar
  30. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721. doi: 10.1016/S0032-9592(02)00194-2 CrossRefGoogle Scholar
  31. Messias JM, Costa BZ, Lima VMG, Dekker RFH, Rezende MI, Krieger N, Barbosa AM (2009) Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme Microb Techno 45:426–431. doi: 10.1016/j.enzmictec.2009.08.013 CrossRefGoogle Scholar
  32. Obradors N, Montesinos JL, Valero F, Lafuente FJ, Sola C (1993) Effects of different fatty acids in lipase production by Candida rugosa. Biotechnol Let 15:357–360. doi: 10.1007/BF00128276 CrossRefGoogle Scholar
  33. Ohnishi K, Yoshida Y, Sekiguchi J (1994) Lipase production of Aspergillus oryzae. J Fermentation Bioeng 77:490–495. doi: 10.1016/0922-338X(94)90116-3 CrossRefGoogle Scholar
  34. Palomo JM, Ortiz C, Fernández-Lorente G, Fuente M, Guisán JM, Fernández-Lafuente R (2005) Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol 36:447–454. doi: 10.1016/j.enzmictec.2004.09.013 CrossRefGoogle Scholar
  35. Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654. doi: 10.1002/ejlt.200900197 CrossRefGoogle Scholar
  36. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051. doi: 10.1002/ejlt.201100014 CrossRefGoogle Scholar
  37. Papanikolaou S, Chevalot I, Galiotou-Panayotu M, Komatis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single cell protein and lipase production by Yarrowia lipolytica. Electronic J Biotechnol 10. doi: 10.2225/vol10-issue3-fulltext-8
  38. Pogori N, Ahmad C, Yan X, Dong W (2008) Production and biochemical characterization of an extracellular lipase from Rhizopus chinesis CCTCC M201021. Biotechnology 7:710–717CrossRefGoogle Scholar
  39. Rodriguez JA, Mateos JC, Nungaray J, Gonzalez V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269. doi: 10.1016/j.procbio.2006.05.017 CrossRefGoogle Scholar
  40. Ruegger MJS, Tauk-Tornisielo SM (2004) Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Rev Bras Bot 27:205–211CrossRefGoogle Scholar
  41. Salimon J, Noor DAM, Nazrizawati AT (2010) Fatty composition and physiological properties of Malaysian castor been Ricinus communis L. seed oil. Sains Malaysians 39:61–764. doi: 10.1021/jf902726p Google Scholar
  42. Saravanan AN, Suchitra N, Dhandayuthapani K (2007) Role of saturated fatty acids in lipase production using Pseudomonas aeruginosa. J Food Biochem 31:748–756. doi: 10.1111/j.1745-4514.2007.00140.x CrossRefGoogle Scholar
  43. Sarda L, Desnuelle P (1958) Action de la lipase pancreátique sur les esters em émulsion. Biochim Biophys Acta 30:513–521. doi: 10.1016/0006-3002(58)90097-0 PubMedCrossRefGoogle Scholar
  44. Seitz EW (1974) Industrial application of microbial lipases: a review. J Am Oil Chem Soc 51:12–16. doi: 10.1007/BF02545206 PubMedCrossRefGoogle Scholar
  45. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechn Adv 19:627–662. doi: 10.1016/S0734-9750(01)00086-6 CrossRefGoogle Scholar
  46. Sheng J, Wang F, Wang HY, Sun M (2011) Cloning, characterization and expression of a novel lipase gene from marine psychrotrophic Yarrowia lipolytica. Ann Microbiol. doi: 10.1007/s13213-011-0348-9
  47. Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichium candidum lipase by long-chain fatty acids. J Fermentation Bioeng 74:77–80CrossRefGoogle Scholar
  48. Simões MLG, Tauk-Tornisielo SM (2006) Comparação da técnica tradicional e do método turbidimétrico automático no cultivo em diferentes fortes de carbono de fungos filamentosos isolados de área de caatinga. Holos Env 5:94–103Google Scholar
  49. Soares J Jr, Mariano AP, Angelis DF (2008) Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr J Biotechn 8:2774–2778. doi: 10.5897/AJB09.238 Google Scholar
  50. Takaç S, Unlu AE, Erden B (2010) Oxygen transfer strategy modulates the production of lipase and esterase enzymes by Candida rugosa. J Mol Cat B-Enz 64:150–154. doi: 10.1016/j.molcatb.2009.07.005 CrossRefGoogle Scholar
  51. Tan T, Zhang M, Xu J, Zhang J (2004) Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem 39:1495–1502. doi: 10.1016/S0032-9592(03)00296-6 CrossRefGoogle Scholar
  52. Teng Y, Xu Y, Wang D (2009) Production and regulation of different lipase activities from Rhizopus chinensis in submerged fermentations by lipids. J Mol Cat B-Enz 57:292–298. doi: 10.1016/j.molcatb.2008.10.003 CrossRefGoogle Scholar
  53. Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196. doi: 10.1007/s11947-009-0202-2 CrossRefGoogle Scholar
  54. Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electronic J Biotechnol 9. doi: 10.2225/vol9-issue1-fulltext-9
  55. Vargas GDLP, Treichel H, Oliveira D, Beneti SC, Freire DMG, Di Luccio M (2008) Optimization of lipase production by Penicillium simplicissimun in soybean meal. J Chem Technol Biotechnol 83:47–54. doi: 10.1002/jctb.1776 CrossRefGoogle Scholar
  56. Vogel HJ (1956) A convenient growth medium for Neurospora crassa (medium N). Microbiol Gen Bull 13:42–43Google Scholar
  57. Wang L, Chi Z, Wang X, Liu Z, Li J (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol 57:495–501. doi: 10.1007/BF03175345 CrossRefGoogle Scholar
  58. Yang J, Koga Y, Nakano H, Yamane T (2002) Modifying the chaing-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Eng 15:147–152. doi: 10.1093/protein/15.2.147 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and the University of Milan 2012

Authors and Affiliations

  • Alex Fernando de Almeida
    • 1
  • Sâmia Maria Taulk-Tornisielo
    • 1
  • Eleonora Cano Carmona
    • 2
    Email author
  1. 1.Environmental Studies CenterUniversidade Estadual PaulistaRio ClaroBrazil
  2. 2.Biochemistry and Microbiology DepartmentUniversidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations