Annals of Microbiology

, Volume 63, Issue 3, pp 951–956 | Cite as

Construction of Lactococcus lactis thyA-null using the Red recombination system

  • Xinxi Gu
  • Chen Li
  • Yi Cai
  • Hui Dong
  • Wentao Xu
  • Hongtao Tian
  • Jianguo Yang
Original Article

Abstract

Lactococcus lactis—a food-grade nonpathogenic lactic acid bacterium—is used widely in the food industry. In this report, we describe an approach to construct deficient strains in L. lactis utilizing the λ-Red recombination system. Three kinds of recombinant proteins, λ exonuclease, β protein and γ protein, were induced by l-arabinose in L. lactis MG1363 harboring the plasmid pKD46. A chloramphenicol-resistant cassette was amplified from pGj103 containing homology arms of 50 nt to the thyA gene. The PCR-generated DNA fragment was then electroporated into L. lactis MG1363, which expressed the recombination proteins. ThyA-null strains resistant to chloramphenicol were obtained and their growth characteristics were analyzed in relation to thymidine requirement. The results revealed that the thyA gene in L. lactis MG1363 was successfully knocked out. This is the first time that the Red system has been used in a Gram-positive bacterium, and use of the techniques presented here should prompt rapid and efficient mutagenesis or modification of L. Lactis chromosomal genes.

Keywords

Red recombinant system Gene knock-out Lactococcus lactis thyA 

References

  1. Belfrot M, Moelleken A, Maley GF, Maley F (1983) Purification and properties of T4 phage thymidylate synthetase produced by the cloned gene in an amplification vector. J Biol Chem 258:2045–2051Google Scholar
  2. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753PubMedCrossRefGoogle Scholar
  3. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759PubMedCrossRefGoogle Scholar
  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCrossRefGoogle Scholar
  5. Du Toit M, Franz CM, Dicks LM, Schillinger U, Haberer P, Warlies B, Ahrens F, Holzapfel WH (1998) Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int J Food Microbiol 40:93–104PubMedCrossRefGoogle Scholar
  6. Geertsma ER, Poolman B (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 4:705–707PubMedCrossRefGoogle Scholar
  7. Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49:377–381PubMedGoogle Scholar
  8. Hickson ID, Atkinson KE, Emmerson PT (1982) Molecular cloning and amplification of the gene for thymidylate synthetase of E.coli. Gene 18:257–260PubMedCrossRefGoogle Scholar
  9. Holo H, Nes IF (1989) High-frequency transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3312PubMedGoogle Scholar
  10. Jensen PR, Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366PubMedGoogle Scholar
  11. Kiel JA, ten Berge AM, Borger P, Venema G (1995) A general method for the consecutive integration of single copies of a heterologous gene at multiple locations in the Bacillus subtilis chromosome by replacement recombination. Appl Environ Microbiol 61:4244–4250PubMedGoogle Scholar
  12. Kok J, Buist G, Zomer AL, van Hijum SA, Kuipers OP (2005) Comparative and functional genomics of lactococci. FEMS Microbiol Rev 29:411–433PubMedCrossRefGoogle Scholar
  13. Kuipers OP, de Jong A, Baerends RJ, van Hijum SA, Zomer AL, Karsens HA, den Hengst CD, Kramer NE, Buist G, Kok J (2002) Transcriptome analysis and related databases of Lactococcus lactis. Antonie Van Leeuwenhoek 82:113–122PubMedCrossRefGoogle Scholar
  14. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65PubMedCrossRefGoogle Scholar
  15. Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49:417–423PubMedCrossRefGoogle Scholar
  16. Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM (1998) The beta protein of phage lambda promotes strand exchange. J Mol Biol 276:733–744PubMedCrossRefGoogle Scholar
  17. Lorenz MC, Muir RS, Lim E, McElver J, Weber SC, Heitman J (1995) Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158:113–117PubMedCrossRefGoogle Scholar
  18. Maguin E, Prévost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935PubMedGoogle Scholar
  19. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616PubMedCrossRefGoogle Scholar
  20. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717PubMedCrossRefGoogle Scholar
  21. Morona R, Yeadon J, Considine A, Morona JK, Manning PA (1991) Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA + gene: application to cholera vaccine development. Gene 107:139–144PubMedCrossRefGoogle Scholar
  22. Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071PubMedGoogle Scholar
  23. Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acid Res 27:1555–1557PubMedCrossRefGoogle Scholar
  24. Nauta A, van Sinderen D, Karsens H, Smit E, Venema G, Kok J (1996) Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage rlt. Mol Microbiol 19:1331–1341PubMedCrossRefGoogle Scholar
  25. O’Sullivan D, Walker SA, West SG, Klaenhammer TR (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14:82–87PubMedCrossRefGoogle Scholar
  26. Posno M, Heuvelmans PT, van Giezen MJ, Lokman BC, Leer RJ, Pouwels PH (1991) Complementation of the inability of Lactobacillus strains to utilize d-xylose with d-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 57:2764–2766PubMedGoogle Scholar
  27. Ross P, O’Gara F, Condon S (1990a) Cloning and characterization of the thymidylate synthase gene from Lactococcus lactis subsp. lactis. Appl Environ Microbiol 56:2156–2163PubMedGoogle Scholar
  28. Ross P, O’Gara F, Condon S (1990b) Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl Environ Microbiol 56:2164–2169PubMedGoogle Scholar
  29. Sanders JW, Venema G, Kok J (1997) A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl Environ Microbiol 63:4877–4882PubMedGoogle Scholar
  30. Siezen RJ, Bayjanov J, Renckens B, Wels M, van Hijum SA, Molenaar D, van Hylckama Vlieg JE (2010) Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium. J Bacteriol 192:2649–2650PubMedCrossRefGoogle Scholar
  31. Takahashi N, Kobayashi I (1990) Evidence for the double-strand break repair model of bacteriophage lambda recombination. Proc Natl Acad Sci USA 87:2790–2794PubMedCrossRefGoogle Scholar
  32. Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270PubMedCrossRefGoogle Scholar
  33. Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P (2000) PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242:381–391PubMedCrossRefGoogle Scholar
  34. Wong Q, Ng V, Lin M, Kung H, Chan D, Huang J (2005) Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acid Res 33:e59PubMedCrossRefGoogle Scholar
  35. Yang MM, Zhang WW, Zhang XF, Cen PL (2006) Con-struction and characterization of a novel maltose inducible expression vector in Bacillus subtilis. Biotechnol Lett 28:1713–1718CrossRefGoogle Scholar
  36. Yoon KY, Woodams EE, Hang YD (2004) Probiotication of tomato juice by lactic acid bacteria. J Microbiol 42:315–318PubMedGoogle Scholar
  37. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983PubMedCrossRefGoogle Scholar
  38. Zaragoza O (2003) Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae. J Microbiol Methods 52:141–145PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Xinxi Gu
    • 1
  • Chen Li
    • 1
  • Yi Cai
    • 1
  • Hui Dong
    • 1
  • Wentao Xu
    • 2
  • Hongtao Tian
    • 1
  • Jianguo Yang
    • 3
  1. 1.College of Food Science and TechnologyAgricultural University of HebeiBaodingChina
  2. 2.College of Food science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  3. 3.Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations