Annals of Microbiology

, Volume 63, Issue 3, pp 845–853 | Cite as

Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp.

  • Deepika Kumari
  • M. Sudhakara Reddy
  • Ramesh C. Upadhyay
Original Article


The cultivable bacteria associated with fruiting bodies of different Cantharellus species collected from the forests of the north-western Himalayan region were studied. Repetitive extragenic palindromic (REP) and BOX-PCR fingerprinting analyses revealed that different strains were distributed within Cantharellus species. The number of bacteria varied from 0.5 to 1.1 × 103 CFU/g of fresh tissue for different fruiting bodies. Thirty different operational taxonomic units (OTUs) were found among the bacteria analyzed. 16S rRNA sequence analysis revealed that most of the bacteria associated with different Cantharellus species were Gammaproteobacteria belong to the genera Hafnia, Enterobacter, Ewingella, Rahnella, Stenotrophomonas, and Pseudomonas, and γ-proteobacterium, followed by Betaproteobacteria (Alcaligenes) and Firmicutes, (Bacillus). The most common bacteria associated with the majority of Cantharellus species were Hafnia and Stenotrophomonas species.


Endophytic bacteria Mycorrhization helper bacteria Hafnia sp. Stenotrophomonas sp. Golden chanterelle 



The authors are grateful to TIFAC-CORE, Thapar University, Patiala for the facilities.


  1. Akaike H (1981) Likelihood of a model and information criteria. J Econometrics 16:3–14CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang S, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Araujo W-L, Maccheroni W, Aguilar-Vildoso C-I, Barroso P, Saridakis H, Azevedo J (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236PubMedCrossRefGoogle Scholar
  4. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247 :23–35. Google Scholar
  5. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterization of bacteria from Pinus sylvestris–Suillus luteus mycorrhizas and their effects on root–fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227PubMedGoogle Scholar
  6. Burke DJ, Dunham SM, Kretzer AM (2008) Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi. FMES Mirobiol Ecol 65:299–309CrossRefGoogle Scholar
  7. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249PubMedCrossRefGoogle Scholar
  8. Dahm H, Wrótniak W, Strzelczyk E, Li C-Y, Bednarska E (2005) Diversity of culturable bacteria associated with fruiting bodies of ectomycorrhizal fungi. Phytopathol Polon 38:51–62Google Scholar
  9. Danell E, Camacho FJ (1997) Successful cultivation of the golden chanterelle. Nature 385:303CrossRefGoogle Scholar
  10. Danell E, Alstrom S, Ternstrom A (1993) Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius. Mycol Res 97:1148–1152CrossRefGoogle Scholar
  11. Dunham SM, O’Dell TE, Molina R (2003) Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species Cantharellus cascadensis sp. nov. from the American Pacific Northwest. Mycol Res 107:1163–1177PubMedCrossRefGoogle Scholar
  12. Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176CrossRefGoogle Scholar
  13. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhial symbiosis of Australian Acacia species. Mycorrhiza 13:85–91PubMedCrossRefGoogle Scholar
  14. Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945PubMedCrossRefGoogle Scholar
  15. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  16. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  17. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol Mol Biol Rev 75:583–609PubMedCrossRefGoogle Scholar
  18. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  19. Gazzanelli G, Malatesta M, Pianetti A, Baffone W, Stocchi V, Citterio B (1999) Bacteria associated to fruit bodies of ectomycorrhizal fungus Tuber borchii Vittad. Symbiosis 26:211–222Google Scholar
  20. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopatogenic bacteria. Appl Environ Microbiol 61:793–796PubMedGoogle Scholar
  21. Khetmalas MB, Egger KN, Massicotte HB, Tackaberry LE, Clapperton MJ (2002) Bacterial diversity associated with subalpine fir (Abies lasiocarpa) ectomycorrhizae following wildfire and salvage-logging in central British Columbia. Can J Microbiol 48:611–625PubMedCrossRefGoogle Scholar
  22. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418PubMedCrossRefGoogle Scholar
  23. Kreig NR, Holt JG (1984) Bergey’s Manual of Systematic Bacteriology, vol. I. Williams and Wilkins, BaltimoreGoogle Scholar
  24. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecol 40:43–56Google Scholar
  25. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751CrossRefGoogle Scholar
  26. Rademaker JL, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677PubMedCrossRefGoogle Scholar
  27. Rangel-Castro JI, Danell E, Pfeffer PE (2002) A 13C-NMR study of exudation and storage of carbohydrates and amino acid in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94:1990–1991CrossRefGoogle Scholar
  28. Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395PubMedCrossRefGoogle Scholar
  29. Ronquist F, Heulsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  30. Rosenblueth M, Martínez Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microb Interact 19:827–837CrossRefGoogle Scholar
  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  32. Sbrana C, Bagnoli G, Bedini S, Filippi C, Giovannetti M, Nuti MP (2000) Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascoscarps. Can J Microbiol 46:259–268PubMedGoogle Scholar
  33. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  34. Timonen S, Jørgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris–Suillus bovinus and Pinus sylvestris–Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513Google Scholar
  35. Varese GC, Trotta PA, Scannerini S, Luppi-Mosca AM, Martinotti G (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis 21:129–147Google Scholar
  36. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based Polymerase Chain Reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  37. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  38. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Deepika Kumari
    • 1
  • M. Sudhakara Reddy
    • 1
  • Ramesh C. Upadhyay
    • 2
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Directorate of Mushroom ResearchSolanIndia

Personalised recommendations