Annals of Microbiology

, Volume 63, Issue 2, pp 745–753 | Cite as

Identification and histamine formation of Tetragenococcus isolated from Thai fermented food products

  • Jaruwan Sitdhipol
  • Somboon TanasupawatEmail author
  • Preenapha Tepkasikul
  • Pattaraporn Yukphan
  • Amonlaya Tosukhowong
  • Takashi Itoh
  • Soottawat Benjakul
  • Wonnop Visessanguan
Original Article


Forty-one tetrad-forming halophilic lactic acid bacteria were isolated from 7 kinds of fermented foods in Thailand. All the isolates were identified as the genus Tetragenococcus by their phenotypic characteristics. On the basis of 16S rRNA gene restriction analysis using MboI and AluI and 16S rRNA gene sequence analyses, 41 isolates could be divided into two groups (groups A and B). All 22 isolates in Group A were identified as T. halophilus. 16S rRNA gene sequences of the representative isolates, SP37-2 and KS87-1 exhibited 99.4–99.5 % similarity to that of T. halophilus ATCC 33315T. Nineteen isolates in Group B were identified as T. muriaticus. 16S rRNA gene sequences of the representative isolates, KM1-5 and KS87-14, showed 99.0–99.6 % similarity to that of T. muriaticus JCM 10006T. Histamine formation was determined by using HPLC and the histidine decarboxylase (hdc) gene of the newly isolated histamine-producing strain was partially sequenced. The strain KS87-14 prolifically formed histamine 10 times higher than the reported T. muriaticus JCM 10006T. The positive detection of KS87-14 was achieved by using hdcA gene-specific primers JV16HC and JV17HC.


Halophilic lactic acid bacteria Histamine Histidine decarboxylase gene Tetragenococcus halophilus Tetragenococcus muriaticus Thai fermented foods 



This work was financially supported by the Ministry of Science and Technology and the Thailand Research Fund for financial support under the TRF Senior Research Scholar programme to S.B. Thanks are also due to the National Center for Genetic Engineering and Biotechnology (BIOTEC) for providing laboratory equipment and experimental space. We thank Dr. Jung-Sook Lee, Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea for providing a type strain of T. koreensis.


  1. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127PubMedCrossRefGoogle Scholar
  2. Chen YS, Yanagida F, Hsu JS (2006) Isolation and characterization of lactic acid bacteria from dochi (fermented black beans), a traditional fermented food in Taiwan. Lett Appl Microbiol 43:229–235PubMedCrossRefGoogle Scholar
  3. Collins MD, Williams AM, Wallbanks S (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262Google Scholar
  4. Coton E, Coton M (2005) Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria. J Microbiol Methods 63:296–304PubMedCrossRefGoogle Scholar
  5. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135CrossRefGoogle Scholar
  6. De Las Rivas B, Marcobal A, Munoz R (2005) Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol Lett 244:367–372CrossRefGoogle Scholar
  7. De Las Rivas B, Rodríguez H, Carrascosa AV, Muñoz R (2008) Molecular cloning and functional characterization of a histidine decarboxylase from Staphylococcus capitis. J Appl Microbiol 104:194–203PubMedGoogle Scholar
  8. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The genera Pediococcus and Tetragenococcus. In: Hozapfel WH, Franz MAP, Ludwig W, Back W, Dicks MT (eds) The Prokaryotes, vol 4, 3rd edn. Springer, New York, pp 229–266Google Scholar
  9. Eerola S, Hinkkanen R, Lindfors E, Hirvi T (1993) Liquid chromatography determination of biogenic amines in dry sausages. J AOAC Int 76:575–577PubMedGoogle Scholar
  10. Ennahar S, Cai Y (2005) Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al. 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov. Int J Syst Evol Microbiol 55:589–592PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Hanagata H, Shida O, Takagi H (2003) Taxonomic homogeneity of a salt-tolerant lactic acid bacteria isolated from shoyu mash. J Gen Appl Microbiol 49:95–100PubMedCrossRefGoogle Scholar
  13. Hucker GJ, Conn HJ (1923) Method of Gram staining. Tech Bull NY State Agric Exp Stn 93:3–37Google Scholar
  14. Iizuka H, Yamasato K (1959) Pediococcus soyae nov. sp., main lactic acid bacteria in shoyu moromi. J Gen Appl Microbiol 5:58–73CrossRefGoogle Scholar
  15. Juste A, Van Trappen S, Verreth C, Cleenwerck I, De Vos P, Lievens B, Willems KA (2012) Characterization of Tetragenococcus strains from sugar thick juice reveals a novel species, Tetragenococcus osmophilus sp. nov., and divides Tetragenococcus halophilus into two subspecies, T. halophilus subsp. halophilus subsp. nov. and T. halophilus subsp. flandriensis subsp. nov. Int J Syst Evol Microbiol 62:129–137PubMedCrossRefGoogle Scholar
  16. Kimura M (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  17. Kimura B, Konagaya Y, Fujii T (2001) Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. Int J Food Microbiol 70:71–77PubMedCrossRefGoogle Scholar
  18. Kobayashi T, Kimura B, Fujii T (2000) Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puffer fish ovaries fermented with rice-bran. Int J Food Microbiol 56:211–218PubMedCrossRefGoogle Scholar
  19. Kobayashi T, Kajiwara M, Wahyuni M, Kitakado T, Hamada-Sato N, Imada C, Watanabe E (2003) Isolation and characterization of halophilic lactic acid bacteria isolated from “terasi” shrimp paste: a traditional fermented seafood product in Indonesia. J Gen Appl Microbiol 49:279–286PubMedCrossRefGoogle Scholar
  20. Konagaya Y, Kimura B, Ishida M, Fujii T (2002) Purification and properties of a histidine decarboxylase from Tetragenococcus muriaticus, a halophilic lactic acid bacterium. J Appl Microbiol 92:1136–1142PubMedCrossRefGoogle Scholar
  21. Le Jeune C, Lonvaud-Funel A, ten Brink B, Hofstra H, van der Vossen JM (1995) Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol 78:316–326PubMedCrossRefGoogle Scholar
  22. Lee M, Kim MK, Vancanneyt M, Swings J, Kim SH, Kang MS, Lee ST (2005) Tetragenococcus koreensis sp. nov., a novel rhammolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413PubMedCrossRefGoogle Scholar
  23. Lucas PM, Wolken WA, Claisse O, Lolkema JS, Lonvaud-Funel A (2005) Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol 71:1417–1424PubMedCrossRefGoogle Scholar
  24. Recsei PA, Moore WM, Snell EE (1983) Pyruvoyl-dependent histidine decarboxylases from Clostridium perfringens and Lactobacillus buchneri. J Biol Chem 258:439–444PubMedGoogle Scholar
  25. Röling WFM, van Verseveld HW (1996) Characterization of Tetragenococcus halophila populations in Indonesian soy mash (Kecap) fermentation. Appl Environ Microbiol 62:1203–1207PubMedGoogle Scholar
  26. Saitou N, Nei M (1987) The neighboring-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. Sakaguchi K (1958) Studies on the activities of bacteria in soy sauce brewing. Part III. Taxonomic studies on Pediococcus soyae nov. sp., the soy sauce lactic acid bacteria. Bull Agric Chem Soc Jpn 22:353–363CrossRefGoogle Scholar
  28. Satomi M, Kimura B, Mizoi M, Sato T, Fujii T (1997) Tetragenococcus muriaticus sp. Nov., a new moderately a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836PubMedCrossRefGoogle Scholar
  29. Satomi M, Furushita M, Oikawa H, Takahashi MY, Yano Y (2008) Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce. Int J Food Microbiol 126:202–209PubMedCrossRefGoogle Scholar
  30. Taira W, Funatsu Y, Satomi M, Takano T, Abe H (2007) Changes in extractive components and microbial proliferation during fermentation of fish sauce from underutilized fish species and quality of final products. Fish Sci 73:913–923CrossRefGoogle Scholar
  31. Tamura K, Dududley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  32. Tanasupawat S, Komagata K (1995) Lactic acid bacteria in fermented foods in Thailand. World J Microbiol Biotechnol 11:253–256CrossRefGoogle Scholar
  33. Tanasupawat S, Okada S, Komagata K (1998) Lactic acid bacteria found in fermented fish in Thailand. J Gen Appl Microbiol 44:193–200PubMedCrossRefGoogle Scholar
  34. Tanasupawat S, Thongsanit J, Okada S, Komagata K (2002) Lactic acid bacteria isolated from soy sauce mash in Thailand. J Gen Appl Microbiol 48:201–209PubMedCrossRefGoogle Scholar
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  36. Thongsanit J, Tanasupawat S, Keeratipibul S, Jatikavanich S (2002) Characterization and identification of Tetragenococcus halophilus and Tetragenococcus muriaticus strains from fish sauce (Nam-pla). Jpn J Lactic Acid Bact 13:46–52Google Scholar
  37. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J (2011) Use of Tetragenococcus halophilus as a starter culture for flavor Improvement in fish sauce fermentation. J Agric Food Chem 59:8401–8408PubMedCrossRefGoogle Scholar
  38. Villar M, Holgado AP, Sanchez JJ, Trucco RE, Oliver G (1985) Isolation and characterization of Pediococcus halophilus from salted anchovies (Engraulis anchoita). Appl Environ Microbiol 49:664–666PubMedGoogle Scholar
  39. Yokoi K, Harada Y, Shozen K, Satomi M, Taketo A, Kodaira K (2011) Characterization of the histidine decarboxylase gene of Staphylococcus epidermidis TYH1 coded on the staphylococcal cassette chromosome. Gene 477(1–2):32–41PubMedCrossRefGoogle Scholar
  40. Yongsawatdigul J, Choi YS, Udomporn S (2004) Biogenic amines formation in fish sauce prepared from fresh and temperature-abused Indian anchovy (Stolephorus indicus). J Food Sci 69(4):312–319Google Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Jaruwan Sitdhipol
    • 1
  • Somboon Tanasupawat
    • 1
    Email author
  • Preenapha Tepkasikul
    • 2
  • Pattaraporn Yukphan
    • 3
  • Amonlaya Tosukhowong
    • 2
  • Takashi Itoh
    • 4
  • Soottawat Benjakul
    • 5
  • Wonnop Visessanguan
    • 2
  1. 1.Department of Biochemistry and Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  2. 2.Food Biotechnology Research UnitNational Center for Genetic Engineering and Biotechnology (BIOTEC)Pathum ThaniThailand
  3. 3.BIOTEC Culture CollectionNational Center for Genetic Engineering and BiotechnologyPathum ThaniThailand
  4. 4.Japan Collection of MicroorganismsRIKEN BioResource CenterSaitamaJapan
  5. 5.Department of Food Technology, Faculty of Agro-IndustryPrince of Songkla UniversityHat YaiThailand

Personalised recommendations