Annals of Microbiology

, Volume 63, Issue 2, pp 733–744

Characterisation and identification of spoilage psychotrophic Gram-negative bacteria originating from Tunisian fresh fish

  • Mouna Boulares
  • Mélika Mankai
  • Chedia Aouadhi
  • Ben Moussa olfa
  • Mnasser Hassouna
Original Article

Abstract

The contamination of fresh fish by spoilage bacteria is undesirable, particularly when Gram-negative bacteria, which produce thermo-resistant protease and lipase, can grow. The purpose of the present work was, therefore, to isolate and identify psychrotrophic Gram-negative (Psy G(-)) bacteria, isolated from 80 samples of 12 species of wild and aquacultured fresh seafood, by biochemical and molecular methods using 16S rRNA gene sequencing. Twenty-eight identified strains were studied to evaluate their catalase, nitrate reductase, lipolytic and proteolytic activities, as well as growth ability, at different temperatures, pH and NaCl concentrations. Among 150 Psy G(-) strains, the most dominant species found were: Pseudomonas fluorescens, Aeromonas hydrophila, Pseudomonas putida and Photobacterium damselae. All strains of Psy G(-) had catalase activity and were able to reduce nitrates to nitrites. Proteolytic activity on milk and on gelatin agar was demonstrated for the majority of the isolates. However, extracellular proteolytic activity as assessed by the azocasein method wasn’t very high in all the strains. Lipolytic activity, as assessed by the agar method, showed that 92.9 % of strains could hydrolyse egg yolk, against 82.1 % and 57 % that could hydrolyse Tween 20 and Tween 80, respectively.

Keywords

Fresh fish Psychrotrophic Gram-negative bacteria Proteolytic activity Lipolytic activity 

References

  1. Altinok I, Kayis S, Capkin E (2006) Pseudomonas putida infection in rainbow trout. Aquaculture 261:850–855CrossRefGoogle Scholar
  2. Attouchi M, Sadok S (2010) The effect of powdered thyme sprinkling on quality changes of wild and farmed gilthead sea bream fillets stored in ice. Food Chem 119:1527–1534CrossRefGoogle Scholar
  3. Barbuzzi G, Grimaldi F, Del Nobile MA (2009) Quality decay of fresh processed fish stored under refrigerated conditions. J Food Saf 29:271–286CrossRefGoogle Scholar
  4. Ben Kahla-Nakbi A, Chaieb K, Besbes A, Zmantar T, Bakhrouf A (2006) Virulence and enterobacterial repetitive intergenic consensus PCR of Vibrio alginolyticus strains isolated from Tunisian cultured gilthead sea bream and sea bass outbreaks. Vet Microbiol 117:321–327PubMedCrossRefGoogle Scholar
  5. Ben Moussa O, Mankai M, Barbana C, Hassouna M, Alvarenga NB, Canada J (2008a) Influence of culture conditions on esterase activity of five psychrotrophic Gram negative strains selected from raw Tunisian milk. Ann Microbiol 58:53–59CrossRefGoogle Scholar
  6. Ben Moussa O, Mankai M, Setti K, Boulares M, Maher M, Hassouna M (2008b) Characterisation and technological properties of psychotrophic lactic acid bacteria strains isolated from Tunisian raw milk. Ann Microbiol 58:461–469CrossRefGoogle Scholar
  7. Bojanic KL, Kozacinski I, Filipovic Z, Cvrtila N, Zdolec NB (2009) Quality of sea bass meat during storage on ice. MESO 11:70–74Google Scholar
  8. Boulares M, Mejri L, Hassouna M (2011) Study of the microbial ecology of wild and aquacultured Tunisian fresh fish. J Food Protect 74:1762–1768CrossRefGoogle Scholar
  9. Braun P, Sutherland JP (2005) Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of selected Enterobacteriaceae and Aeromonas hydrophila. Int J Food Microbiol 105:257–266PubMedCrossRefGoogle Scholar
  10. Cardinal M, Gunnlaugsdottir H, Bjoernevik M, Ouisse A, Vallet JL (2004) Sensory characteristics of cold-smoked Atlantic salmon (Salmo salar) from European market and relationships with chemical, physical and microbiological measurements. Food Res Int 37:181–193CrossRefGoogle Scholar
  11. Casaburi A, Blaiotta G, Mauriello G, Pepe O, Villani F (2005) Technological activities of Staphylococcus carnosus and Staphylococcus simulans strains isolated from fermented sausages. Meat Science 71:643–650PubMedCrossRefGoogle Scholar
  12. CA-SFM (2005) Comité de l’Antibiogramme de la société Française de Microbiologie, 1–50Google Scholar
  13. Cavallo JD, Chardon H, Chidiac C, Choutet P, Courvalin P, Dabernat H, Drugeon H, Dubreuil L, Goldstein F, Jarlier V, Leclerq R, Nicolas-Chanoine MH, Philippon A, Quentin C, Rouveix B, Sirot J, Soussy CJ (2006) Comité de l’antibiogramme de la société Française de Microbiologie (Communiqué 2006)Google Scholar
  14. Chytiri S, Chouliara I, Savvaidis IN, Kontominas MG (2004) Microbiological, chemical and sensory assessment of iced whole and filleted aquacultured rainbow trout. Food Microbiol 21:157–165CrossRefGoogle Scholar
  15. Desmazeaud M (1997) Principaux paramètres de l’écologie microbienne des produits laitiers fermentés. Revue de Micobiologie Alimentaire et de Nutrition 15:99–114Google Scholar
  16. Diop MB, Destain J, Tine E, Thonart P (2010) Les produits de la mer au sénégal et le potentiel des bactéries lactiques et des bactériocines pour la conservation. Biotechnol Agron Soc Environ 14:341–350Google Scholar
  17. Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69:130–138PubMedCrossRefGoogle Scholar
  18. Essid I, Ben Ismail H, Bel Hadj Ahmed S, Ghedamsi R, Hassouna M (2007) Characterization and technological properties of Staphylococcus xylosus strains isolated from a Tunisian salted meat. Meat Science 77:204–212PubMedCrossRefGoogle Scholar
  19. Essid I, Medini M, Hassouna M (2009) Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Science 81:203–208PubMedCrossRefGoogle Scholar
  20. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genet Res 8:186–194Google Scholar
  21. Frank JF (1997) Milk and dairy products. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, fundamentals and frontiers. American Society of Microbiology, Washington, D.C., pp 581–594Google Scholar
  22. Franzetti L, Scarpellini M, Mora D, Galli A (2003) Carnobacterium spp. in seafood packaged in modified atmosphere. Ann Microbiol 53:189–198Google Scholar
  23. Galvez A, Abriouel H, Ben Omar N, Lucas R (2010) Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol 21:142–148PubMedCrossRefGoogle Scholar
  24. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  25. Gram L, Dalgaard P (2002) Fish spoilage bacteria – problems and solutions. Curr Opin Biotechnol 13:262–266PubMedCrossRefGoogle Scholar
  26. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137PubMedCrossRefGoogle Scholar
  27. Gram L, Huss HH (2000) Fresh and processed fish and shellfish. In: Lund BM, Baird-Parker AC, Gould GW (eds) The microbiological safety and quality of foods, 1st edn. Chapman and Hall, London, pp 472–506Google Scholar
  28. Greco M, Mazzette R, De Santis EPL, Corona A, Cosseddu AM (2005) Evolution and identification of lactic acid bacteria isolated during the ripening of Sardinian sausages. Meat Science 69:733–739PubMedCrossRefGoogle Scholar
  29. Guiraud JP (1998) Microbiologie alimentaire. Dunod, paris, 138Google Scholar
  30. Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL, Ollivier B, Boudabous A (2009) Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions. International Journal of Microbiology Article ID 731786, 17 pagesGoogle Scholar
  31. Hernandez MD, Lopez MB, Alvarez A, Ferrandini E, Garcia GB, Garrido MD (2009) Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem 114:237–245CrossRefGoogle Scholar
  32. Joffraud JJ, Leroi F, Roy C, Berdagué JL (2001) Characterization of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. Int J Food Microbiol 66:175–184PubMedCrossRefGoogle Scholar
  33. Koutsoumanis K, Giannakourou MC, Taoukis PS, Nychas GJE (2002) Application of shelf life decision system (SLDS) to marine cultured fish quality. Int J Food Microbiol 73:375–382PubMedCrossRefGoogle Scholar
  34. Ligia AS, Prinyawiwatkul W, King JM, Kyoon H, Bankston JD, Ge B (2008) Effect of preservatives on microbial safety and quality of smoked blue catfish (Ictalurus furcatus) steaks during room-temperature storage. Food microbiology 8:958–963Google Scholar
  35. Lyhs U, Korkeala H, Vandamme P, Bjorkroth J (2001) Lactobacillus alimentarius: a specific spoilage organism in marinated herring. Int J Food Microbiol 64:355–360PubMedCrossRefGoogle Scholar
  36. Manjusha S, Sarita GB, Elyas KK, Chandrasekaran M (2005) Multiple Antibiotic Resistances of Vibrio Isolates from Coastal and Brackish Water Areas. Am J Biochem Biotechnol 1:201–206CrossRefGoogle Scholar
  37. Mankaï M, Ben Moussa O, Hassouna M (2005) Influence des conditions de culture sur l’activité protéolytique extracellulaire de souches psychrotrophes isolées à partir de lait cru tunisien réfrigéré - Leur caractérisation enzymatique par le système API ZYM. Ind Aliment Agric 122:7–13Google Scholar
  38. Matamoros S, Pilet MF, Gigout F, Prevost H, Leroi F (2006) Selection of psychotrophic bacteria active against spoilage and pathogenic micro-organisms relevant for seafood products. In Seafood Research from Fish to Dish - Quality, Safety & Processing of Wild and Farmed Seafood (Luten JB, Jacobsen C, Bekaert K, Saebo A and Oehlenschläger J)Google Scholar
  39. Mauriello G, Casaburi A, Blaiotta G, Villani F (2004) Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science 67:149–158PubMedCrossRefGoogle Scholar
  40. Miralles MC, Flores J, Perez-Martinez G (1996) Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiology 13:227–236CrossRefGoogle Scholar
  41. Miranda CD, Zemelman R (2002) Antimicrobial multi resistance in bacteria isolated from freshwater Chilean salmon farms. Sci Total Environ 293:207–218Google Scholar
  42. Munsch-Alatassova P, Alatassova T (2005) Phenotypic characterization of raw milk associated psychrotrophic bacteria. Microbiol Res 157:311–315CrossRefGoogle Scholar
  43. Nam I-Y, Joh K (2007) Rapid Detection of Virulence Factors of Aeromonas Isolated from a Trout Farm by Hexaplex–PCR. J Microbiol 45:297–304PubMedGoogle Scholar
  44. Ozden O, Inugur M, Erkan N (2007) Effect of different dose gamma radiation and refrigeration on the chemical and sensory properties and microbiological status of aquacultured sea bass (Dicentrarchus labrax). Radiat Phys Chem 76:1169–1178CrossRefGoogle Scholar
  45. Ozogul Y, Ozogul F, Kuley E, Ozkutuk AS, Gokbulut C, Kose S (2006) Biochemical, sensory and microbiological attributes of wild turbot (Scophthalmus maximus), from the Black Sea, during chilled storage. Food Chem 99:752–758CrossRefGoogle Scholar
  46. Papamaloni E, Kotzekidou P, Tzanetakis N, Litopoulou-Tzanetaki E (2002) Characterization of Microccocaceae isolated from dry fermented sausage. Food Microbiology 19:441–449CrossRefGoogle Scholar
  47. Pemberton S, Kidda P, Schmidt R (1997) Secreted Enzymes of Aeromonas hydrophila. FEMS Microbiol Lett 152:1–10PubMedCrossRefGoogle Scholar
  48. Poli MB, Parisi G, Zambacavallo G, Mecatti M, Lupi P, Gualtieri M, Franci O (2001) Quality outline of European sea bass (Dicentrarchus labrax) reared in Italy: shelf life, edible yield, nutritional and dietetic traits. Aquaculture 202:303–313CrossRefGoogle Scholar
  49. Porteous LA, Seidler RJ, Watrud LS (1997) An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol Ecol 6:787–791CrossRefGoogle Scholar
  50. Porteous LA, Widmer F, Seidler RJ (2002) Multiple enzyme restriction fragment length polymorphism analysis for high resolution distinction of Pseudomonas (sensu stricto) 16S rRNA genes. J Microbiol Methods 51:337–348PubMedCrossRefGoogle Scholar
  51. Rhodes G, Huys G, Swings J, McGann P, Hiney M, Smith P, Pickup RW (2000) Distribution of oxytetracycline resistance plasmids between Aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tetA. Appl Environ Microbiol 66:3883–3890PubMedCrossRefGoogle Scholar
  52. Richard J (1983) Nature de la flore microbienne dominante et sous-dominante des laits crus très pollués. Lait 63:148–167CrossRefGoogle Scholar
  53. Santos JA, Lopez-Diaz TM, Garcia-Fernandez MC, Garcia Lopez ML, Otero A (1996) Caracterisation and extracellulair activity of psychrotrophic bacteria isolated from villalon cheese. Int J Food Microbiol 33:301–306Google Scholar
  54. Snoussi M, Chaieb K, Rouabhia M, Bakhrouf A (2006) Quantitative study, identification and antibiotics sensitivity of some Vibrionaceae associated to a marine fish hatchery. Ann Microbiol 56:289–293CrossRefGoogle Scholar
  55. Snoussi M, Noumi E, Messaoud A, Hajlaoui H, Bakhrouf A (2010) Biochemical characteristics and genetic diversity of Vibrio spp. and Aeromonas hydrophila strains isolated from the Lac of Bizerte (Tunisia). World J Microbiol Biotechnol 26:2037–2046CrossRefGoogle Scholar
  56. Sun Park K, Ki CS, Kang CI, Kim YJ, Ryeon Chung D, Ran Peck K, Song JH, Lee NY (2012) Evaluation of the GenBank, EzTaxon, and BIBI services for molecular identification of clinical blood culture isolates that were unidentifiable or misidentified by conventional methods. J Clin Microbiol 50(5):1792–1795CrossRefGoogle Scholar
  57. Thapa N, Pal J, Tamang JP (2006) Phenotypic identification and technological properties of lactic acid bacteria isolated from traditionally processed fish products of the Eastern Himalayas. Int J Food Microbiol 107:33–38PubMedCrossRefGoogle Scholar
  58. Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431PubMedCrossRefGoogle Scholar
  59. Tripathy S, Kumar N, Mohanty S, Samanta M, Mandal RN, Maiti NK (2007) Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res 162:391–396PubMedCrossRefGoogle Scholar
  60. Winker S, Woese CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal rRNA characteristics. Syst Appl Microbiol 13:161–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Mouna Boulares
    • 1
  • Mélika Mankai
    • 1
  • Chedia Aouadhi
    • 2
  • Ben Moussa olfa
    • 1
  • Mnasser Hassouna
    • 1
  1. 1.Unité de Recherche “Sciences et Technologies des Aliments”, École Supérieure des Industries Alimentaires de Tunis (ESIAT)TunisTunisie
  2. 2.Laboratoire de Microbiologie, “Groupe bioprocédés”, Institut Pasteur de Tunis (IPT)TunisTunisie

Personalised recommendations