Advertisement

Annals of Microbiology

, Volume 63, Issue 1, pp 21–37 | Cite as

Next-generation sequencing and its potential impact on food microbial genomics

  • Lisa Solieri
  • Tikam Chand Dakal
  • Paolo Giudici
Review Article

Abstract

Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.

Keywords

Next generation sequencing Food microbiology Community profiling Metagenomics Genome sequencing 

References

  1. Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol 192:3160–3161CrossRefGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  3. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617PubMedCrossRefGoogle Scholar
  4. Andrews-Polymenis HL, Santiviago CL, McClelland M (2009) Novel genetic tools for studying food borne Salmonella. Curr Opin Biotechnol 20:149–157PubMedCrossRefGoogle Scholar
  5. Angly FE, Felts B, Breitbarts M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121–2131CrossRefGoogle Scholar
  6. Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203Google Scholar
  7. Araya CL, Payen C, Dunham MJ, Fields S (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11:1–10CrossRefGoogle Scholar
  8. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2011) The oral metagenome in health and disease. ISME J 6:46–56. doi: 10.1038/ismej.2011.85 PubMedCrossRefGoogle Scholar
  9. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552, Epub 2006 Oct 18PubMedCrossRefGoogle Scholar
  10. Berretta J, Morillon A (2009) Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO 10:973–982CrossRefGoogle Scholar
  11. Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:1–10CrossRefGoogle Scholar
  12. Birkeland R, Jin N, Ozdemir AC, Lyons RH Jr, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186:1127–1237PubMedCrossRefGoogle Scholar
  13. Boguski MS, Arnaout R, Hill C (2009) Customized care 2020: how medical sequencing and network biology will enable personalized medicine. f-1000 Biol Rep 1: 73Google Scholar
  14. Borneman AR, Chambers PJ, Pretorius IS (2007) Yeast system biology: modelling the winemaker’s art. Trends Biotechnol 25:349–355PubMedCrossRefGoogle Scholar
  15. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7:1–10CrossRefGoogle Scholar
  16. Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA 100:3960–3964PubMedCrossRefGoogle Scholar
  17. Brzuszkiewicz E, Bruggemann H, Liesegang H (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884PubMedCrossRefGoogle Scholar
  18. Carter D (2009) Saccharomyces genome resequencing project, user manual. http://www.sanger.ac.uk/Teams/Team118//sgrp/. Accessed 4 September 2009 (Original publication: 2008)
  19. Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:3419–3420PubMedCrossRefGoogle Scholar
  20. Chung CAB, Boyd VL, McKernan KJ, Fu Y, Monighetti C, Peckham HE, Barker M (2010) Whole methylome analysis by ultradeep sequencing using two-base encoding. PLoS One 5:1–8Google Scholar
  21. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167PubMedGoogle Scholar
  22. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624PubMedCrossRefGoogle Scholar
  23. Degnan PH, Ochman H (2011) Illumina-based analysis of microbial community diversity. ISME J. doi: 10.1038/ismej.2011.74
  24. Diguistini S, Liao N, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJM (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10:R94.1–R94.12CrossRefGoogle Scholar
  25. Dobson A, O’Sullivan O, Cotter PD, Ross P, Hill C (2011) High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol Lett 320:56–62PubMedCrossRefGoogle Scholar
  26. Edwards RA, Rodrizues-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexanser S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:1–13CrossRefGoogle Scholar
  27. Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99PubMedCrossRefGoogle Scholar
  28. Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Verrocchi P, La Storia A, Laghi L, Mauriello G, Villiani F (2011) Microbial metabolites and bacterial diversity in beef stored in different packaging conditions monitored by pyrosequencing, PCR-DGGE, SPME-GC/MS and HNMR. Appl Environ Microbiol 77:7372–7381. doi: 10.1128/AEM.05521-11 PubMedCrossRefGoogle Scholar
  29. Eschenfeldt WH, Stols L, Rosenbaum H, Khambatta ZS, Quaite-Randall E, Wu S, Kilgore DC, Trent JD, Donnelly MI (2001) DNA from uncultured organisms as a source of 2,5-diketo-d-gluconic acid reductases. Appl Environ Microbiol 67:4206–4214PubMedCrossRefGoogle Scholar
  30. Farrer RA, Kemen E, Jones JDG, Studholme DJ (2009) De novo assembly of the Pseudomonas syringae pv. Syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett 291:103–111PubMedCrossRefGoogle Scholar
  31. Farris MH, Olson JB (2007) Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol 45:376–381PubMedCrossRefGoogle Scholar
  32. Fierer N, Breitbart M, Nultons J (2007) Metagenomic and small-subunit rRNA analyses of the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066PubMedCrossRefGoogle Scholar
  33. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  34. Forde BM, Neville BA, O’Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A, Ross RP, O’Tolle PW (2011) Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Factories 10:1–15CrossRefGoogle Scholar
  35. Fous SD, Nagarajan RP, Costello JF (2010) Genome-scale DNA methylation analysis. Epigenetics 2:105–117Google Scholar
  36. Ghosh TS, Mohammed MH, Rajasingh H, Chadaram S, Mande SS (2011) HabiSign: a novel approach for comparison of metagenomes and rapid identification of habitat-specific sequences. BMC Bioinforma 12(Suppl 13):S9CrossRefGoogle Scholar
  37. Gilbert W (1981) DNA sequencing and gene structure Nobel lecture, 8 December 1980. Biosci Rep 1:353–375PubMedCrossRefGoogle Scholar
  38. Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11:1–15CrossRefGoogle Scholar
  39. Giraffa G, Neviani E (2001) DNA-based, culture independent strategies for evaluating microbial communities in food-associated ecosystems. Int J Food Microbiol 67:19–34PubMedCrossRefGoogle Scholar
  40. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769PubMedCrossRefGoogle Scholar
  41. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237PubMedCrossRefGoogle Scholar
  42. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedCrossRefGoogle Scholar
  43. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, De Lencastre H, Parkhill J, Peacock SJ, Bentley SD (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474PubMedCrossRefGoogle Scholar
  44. He H, Sebaihia M, Lawley TD et al (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 107:7527–7532PubMedCrossRefGoogle Scholar
  45. Henne A, Schmitz A, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116PubMedCrossRefGoogle Scholar
  46. Herrgård MJ, Swainston N, Dobson P et al (2010) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160CrossRefGoogle Scholar
  47. Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29:4618–4626PubMedCrossRefGoogle Scholar
  48. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40:987–993PubMedCrossRefGoogle Scholar
  49. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus. Nat Genet 41:1275–1281PubMedCrossRefGoogle Scholar
  50. Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, Buutterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100PubMedCrossRefGoogle Scholar
  51. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  52. Humblot C, Guyot JP (2009) Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 75:4354–4361PubMedCrossRefGoogle Scholar
  53. Ilie M, Fazayeli F, Ilie S (2011) HiTEC: accurate error correction high-throughput sequencing data. Bioinformatics 27:295–302PubMedCrossRefGoogle Scholar
  54. Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618PubMedCrossRefGoogle Scholar
  55. Jany JL, Barbier G (2008) Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 25:839–848PubMedCrossRefGoogle Scholar
  56. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274PubMedCrossRefGoogle Scholar
  57. Juste A, Thomma BPHJ, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25:745–761PubMedCrossRefGoogle Scholar
  58. Kim YS, Kim MC, Kwon SW, Kim SJ, Park IC, Ka JO, Weon HY (2011) Analysis of bacterial communities in Meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J Microbiol 49:340–348PubMedCrossRefGoogle Scholar
  59. Klenk HP, Göker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182PubMedCrossRefGoogle Scholar
  60. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–426PubMedCrossRefGoogle Scholar
  61. Lee SH, Jung JY, Lee SH, Jeon CO (2011) Complete genome sequence of Weissella koreensis KACC 15510, isolated from Kimchi. J Bacteriol 193:5534PubMedCrossRefGoogle Scholar
  62. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammoniaoxidizing prokaryotes in soils. Nature 442:806–809PubMedCrossRefGoogle Scholar
  63. Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317PubMedCrossRefGoogle Scholar
  64. Li XR, Ma EB, Yan LZ, Meng H, Du XW, Zhang SW, Quan ZX (2011) Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int J Food Microbiol 146:31–37PubMedCrossRefGoogle Scholar
  65. Liti G, Louis EJ (2005) Yeast evolution and comparative genomics. Annu Rev Microbiol 59:135–153PubMedCrossRefGoogle Scholar
  66. Liti G, Carter DM, Mosses AM et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341PubMedCrossRefGoogle Scholar
  67. Liu GE (2009) Applications and case studies of the next-generation sequencing technologies in food, nutrition and agriculture. Recent Patents Food Nutr Agric 1:75–79CrossRefGoogle Scholar
  68. Lui S, Leathers TD, Copeland A (2011) Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant. J Bacteriol 193:4019–4020CrossRefGoogle Scholar
  69. Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105:9272–9277PubMedCrossRefGoogle Scholar
  70. Machielsen R, van Alen-Boerrigter IJ, Koole LA, Bongers RS, Kleerebezem M, Van Hylckama Vlieg JET (2010) Indigenous and environmental modulation of frequencies of mutation in Lactobacillus plantarum. Appl Environ Microbiol 76:1587–1595PubMedCrossRefGoogle Scholar
  71. Makarova K, Slesarev A, Wolf W et al (2006) Comparative genomics of lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616PubMedCrossRefGoogle Scholar
  72. Mardis ER (2008a) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedCrossRefGoogle Scholar
  73. Mardis ER (2008b) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  74. Mardis ER (2009) New strategies and emerging technologies for massively parallel sequencing: applications in medical research. Genome Med 1:40.1–40.4CrossRefGoogle Scholar
  75. Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84.1–84.3CrossRefGoogle Scholar
  76. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  77. Masoud W, Takamiya M, Vogensen FK (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21:142–148CrossRefGoogle Scholar
  78. Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  79. Mitra RD, Church GM (1999) In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res 27:1–6CrossRefGoogle Scholar
  80. Mitra RD, Shendure J, Olejnik J, Krzymanska OE, Church GM (2003) Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320:55–65PubMedCrossRefGoogle Scholar
  81. Mitra S, Stärk M, Huson DH (2011) Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 12(Suppl 3):S17PubMedCrossRefGoogle Scholar
  82. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16PubMedCrossRefGoogle Scholar
  83. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genetics 92:255–264Google Scholar
  84. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Synder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedCrossRefGoogle Scholar
  85. Nam SH, Choi SH, Kang A, Kim DW, Kim RN, Kim A, Kim DS, Park HS (2011a) Genome sequence of Lactobacillus farciminis KCTC 3681. J Bacteriol 193:1790–1791PubMedCrossRefGoogle Scholar
  86. Nam SH, Choi SH, Kang A, Kim DW, Kim RN, Kim A, Kim DS, Park HS (2011b) Genome sequence of Lactobacillus coryniformis subsp. coryniformis KCTC 3167. J Bacteriol 193:1014–1015PubMedCrossRefGoogle Scholar
  87. Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042PubMedCrossRefGoogle Scholar
  88. Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kuck U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6:1–22CrossRefGoogle Scholar
  89. O’Flaherty S, Klaenhammer TR (2011) The impact of omic technologies on the study of food microbes. Annu Rev Food Sci Biotechnol 2:353–371CrossRefGoogle Scholar
  90. Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145:205–210PubMedCrossRefGoogle Scholar
  91. Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osteras M, Schalk M, Clark A, Neilsen J (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genet 11:1–17Google Scholar
  92. Pachter L (2011) Models for transcript quantification from RNA-Seq. arXiv:1104.3889v2Google Scholar
  93. Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:1–9CrossRefGoogle Scholar
  94. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435PubMedCrossRefGoogle Scholar
  95. Park EJ, Kim KH, Abell GCJ, Kim MS, Roh SW, Bae JW (2011) Metagenomic analysis of the viral communities in fermented foods. Appl Environ Microbiol 77:1284–1289PubMedCrossRefGoogle Scholar
  96. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomas NR, Dougan G (2009) A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5:1–13CrossRefGoogle Scholar
  97. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Thikonov A, Huson DH, Tomsho LP, Auch A, Rampp M, Miller W, Schuster SC (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394PubMedCrossRefGoogle Scholar
  98. Qi J, Wijeratne AJ, Tomsho LP, Hu Y, Schuster SC, Ma H (2009) Characterization of meiotic crossovers and gene conversion by whole-genome sequencing in Saccharomyces cerevisiae. BMC Genet 10:475–486Google Scholar
  99. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–67PubMedCrossRefGoogle Scholar
  100. Rademaker JLW, Hoolwerf JD, Wagendorp AA, Te Giffel MC (2006) Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting. Int Dairy J 16:457–466CrossRefGoogle Scholar
  101. Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev 6:693–699CrossRefGoogle Scholar
  102. Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19:294–305PubMedCrossRefGoogle Scholar
  103. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552PubMedCrossRefGoogle Scholar
  104. Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16PubMedCrossRefGoogle Scholar
  105. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–254PubMedCrossRefGoogle Scholar
  106. Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352PubMedCrossRefGoogle Scholar
  107. Sakamoto N, Tanaka S, Sonomoto K, Nakayama J (2011) 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. Int J Food Microbiol 144:352–359PubMedCrossRefGoogle Scholar
  108. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  109. Schadt EE, Turner S, Kasarskis A (2010) A window into third generation sequencing. Hum Mol Genet 19:227–240CrossRefGoogle Scholar
  110. Schmid CD, Bucher P (2007) ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131:831–832PubMedCrossRefGoogle Scholar
  111. Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255PubMedCrossRefGoogle Scholar
  112. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145PubMedCrossRefGoogle Scholar
  113. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–345PubMedCrossRefGoogle Scholar
  114. Sipiczki M (2011) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61:85–93CrossRefGoogle Scholar
  115. Smith DR, Quinlan AR, Peckham HE et al (2008) Rapid whole-genome mutational profiling using next generation sequencing technologies. Genome Res 18:1638–1642PubMedCrossRefGoogle Scholar
  116. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  117. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16PubMedCrossRefGoogle Scholar
  118. Stratford M, Bond CJ, James SA, Steels H (2002) Candida davenportii sp. nov., a potential soft drinks spoilage yeast isolated from a wasp. Int J Syst Evol Microbiol 52:1369–1375PubMedCrossRefGoogle Scholar
  119. Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JD (2010) Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 310:182–192PubMedCrossRefGoogle Scholar
  120. Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhuo Z, Sun T, Wang L, Meng H, Zhang H, Chen W (2011) Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol 193:3426–3427PubMedCrossRefGoogle Scholar
  121. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159. doi: 10.1093/nar/gkq543
  122. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446PubMedCrossRefGoogle Scholar
  123. Turner DJ, Keane TM, Sudbery I, Adams DJ (2009) Next generation sequencing of vertebrate experimental organisms. Mamm Genome 20:327–338PubMedCrossRefGoogle Scholar
  124. Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43PubMedCrossRefGoogle Scholar
  125. Van Hylckama Vlieg JET, Veiga P, Zhang C, Derrien M, Zhao L (2011) Impact of microbial transformation of food on health-from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 22:211–219PubMedCrossRefGoogle Scholar
  126. Van Vliet AH (2010) Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302:1–7PubMedCrossRefGoogle Scholar
  127. Veiga P, Gallini CA, Beal C, Michaud M, Dubois A, Khlebnikov A, Van Hylckama Vlieg JET, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garrett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 107:18132–18137PubMedCrossRefGoogle Scholar
  128. Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:1–18CrossRefGoogle Scholar
  129. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  130. Wang Y, Wang J, Ahmed Z, Bai X, Wang J (2011) Complete genome sequence of Lactobacillus kefiranofaciens ZW3. J Bacteriol 193:4280–4281PubMedCrossRefGoogle Scholar
  131. Wilhelm BT, Marguerat S, Watt S, Schubart F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahmer J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefGoogle Scholar
  132. Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  133. Wittmann C, Hinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859PubMedCrossRefGoogle Scholar
  134. Wu D, Hugenholtz P, Mavromatis K et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCrossRefGoogle Scholar
  135. Wurtzel R, Sapra F, Chen Y, Xu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141PubMedCrossRefGoogle Scholar
  136. Xu Z, Wei W, Gagneur J, Perrochi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037PubMedCrossRefGoogle Scholar
  137. Yang X, Dorman KS, Aluru S (2010) Reptile: representative tiling for short read eroor correction. Bioinformatics 26:2526–2533PubMedCrossRefGoogle Scholar
  138. Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536PubMedCrossRefGoogle Scholar
  139. Züell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Lisa Solieri
    • 1
  • Tikam Chand Dakal
    • 1
  • Paolo Giudici
    • 1
  1. 1.Department of Agricultural and Food SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly

Personalised recommendations