Advertisement

Annals of Microbiology

, Volume 63, Issue 1, pp 393–398 | Cite as

Analysis of acetic acid bacteria by different culture-independent techniques in a controlled superficial acetification

  • Carla Jara
  • Estibaliz Mateo
  • José-Manuel Guillamón
  • Albert Mas
  • María-Jesús Torija
Short Communication

Abstract

Three molecular techniques [denaturing gradient gel electrophoresis (DGGE-PCR), restriction fragment length polymorphism of the 16S rRNA gene amplicon (RFLP-PCR 16S rRNA) and real-time PCR (RT-PCR) with SybrGreen and with specific TaqMan-Minor Groove Binder (MGB) probes] were used to identify and monitor acetic acid bacteria (AAB) species during a controlled acetification. This process was initiated by seeding a starter culture comprising a mixture of one strain each of Acetobacter pasteurianus, Gluconacetobacter europaeus and Gluconacetobacter hansenii. Analysis at the species level indicated that the population of A. pasteurianus increased quickly, subsequently acquiring a dominant position, whereas the other two species gradually disappeared. All three methods confirmed this result. When the total AAB population was estimated, the results obtained based on summing the three species by TaqMan-MGB RT-PCR, total AAB RT-PCR and the direct microscopic count method were similar. Using TaqMan-MGB RT-PCR we were able to detect species with populations 3 log units lower than that of the major species and which could not be detected by other methods.

Keywords

Real time-PCR DGGE-PCR Surface culture Traditional vinegar Wine 

Notes

Acknowledgements

The authors are grateful for financial assistance from the Spanish Government (Project AGL2007-66417–C02-02) and the European Commission (Project WINEGAR, Cooperative Research under the Sixth Framework Programme of the European Community, 2005-2007). We thank the Language Service of the Rovira i Virgili University for revising the manuscript.

References

  1. Andorrà I, Landi S, Mas A, Guillamón JM, Esteve-Zarzoso B (2008) Effect of oenological practices on microbial populations using culture-independent techniques. Food Microbiol 25:849–856PubMedCrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Short protocols in molecular biology, 2nd edn. Wiley, LondonGoogle Scholar
  3. Baena-Ruano S, Jiménez-Ot C, Santos-Dueñas IM, Cantero-Moreno D, Barja F, García-García I (2006) Rapid method for total, viable and non-viable acetic acid bacteria determination during acetification process. Process Biochem 41:1160–1164CrossRefGoogle Scholar
  4. Cleenwerck I, De Wachter M, González A, De Vuyst L, De Vos P (2009) Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 59:1771–1786PubMedCrossRefGoogle Scholar
  5. Cocolin L, Bisson LF, Mills DA (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189:81–87PubMedCrossRefGoogle Scholar
  6. De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P (2006) Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 23:809–813PubMedCrossRefGoogle Scholar
  7. Du Toit WJ, Lambrechts MG (2002) The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64PubMedCrossRefGoogle Scholar
  8. Entani E, Ohmori O, Masai H, Suzuki K (1985) Acetobacter polioxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490CrossRefGoogle Scholar
  9. Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F (2010) Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiol 27:973–978PubMedCrossRefGoogle Scholar
  10. Gammon KS, Livens S, Pawlowsky K, Rawling SJ, Chandra S, Middleton AM (2006) Development of real-time PCR methods for the rapid detection of low concentrations of Gluconobacter and Gluconacetobacter species in an electrolyte replacement drink. Lett Appl Microbiol 44:262–267CrossRefGoogle Scholar
  11. González A, Hierro N, Poblet M, Rozès N, Mas A, Guillamón JM (2004) Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J Appl Microbiol 96:853–860PubMedCrossRefGoogle Scholar
  12. González A, Hierro N, Poblet M, Mas A, Guillamón JM (2006) Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR. FEMS Microbiol Lett 254:123–128PubMedCrossRefGoogle Scholar
  13. Gullo M, Giudici P (2008) Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J Food Microbiol 125:46–53PubMedCrossRefGoogle Scholar
  14. Gullo M, De Vero L, Giudici P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75:2585–2589PubMedCrossRefGoogle Scholar
  15. Hidalgo C, Vegas C, Mateo E, Tesfaye W, Cerezo AB, Callejón RM, Poblet M, Guillamón JM, Mas A, Torija MJ (2010) Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production. Int J Food Microbiol 141:56–62PubMedCrossRefGoogle Scholar
  16. Ilabaca C, Navarrete P, Mardones P, Romero J, Mas A (2008) Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing. Int J Food Microbiol 126:245–249PubMedCrossRefGoogle Scholar
  17. Jara C, Mateo E, Guillamón JM, Torija MJ, Mas A (2008) Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. Int J Food Microbiol 128:336–341PubMedCrossRefGoogle Scholar
  18. López I, Ruiz-Larrea F, Cocolin L, Orr E, Philster T, Marshall M, Vander-Gheynst J, Mills D (2003) Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6801–6807PubMedCrossRefGoogle Scholar
  19. Mesa MM, Macías M, Cantero D, Barja F (2003) Use of the direct epifluorescent filter technique for the enumeration of viable and total acetic acid bacteria from vinegar fermentation. J Fluoresc 13:261–265CrossRefGoogle Scholar
  20. Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:136–141PubMedCrossRefGoogle Scholar
  21. Prieto C, Jara C, Mas A, Romero J (2007) Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. Int J Food Microbiol 115:348–355PubMedCrossRefGoogle Scholar
  22. Ruiz A, Poblet M, Mas A, Guillamón JM (2000) Identification of acetic acid bacteria by RFLP of PCR-amplified 16 rDNA and 16S-23SrDNA intergenic spacer. Int J Syst Evol Microbiol 50:1981–1987PubMedCrossRefGoogle Scholar
  23. Sievers M, Sellmar S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in Central Europe. Syst Appl Microbiol 15:386–392CrossRefGoogle Scholar
  24. Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentation. Int J Syst Bacteriol 48:935–940PubMedCrossRefGoogle Scholar
  25. Torija MJ, Mateo E, Guillamón JM, Mas A (2010) Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan–MGB probes. Food Microbiol 27:257–265PubMedCrossRefGoogle Scholar
  26. Vegas C, Mateo E, González A, Jara C, Guillamón JM, Poblet M, Torija MJ, Mas A (2010) Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol 138:130–136PubMedCrossRefGoogle Scholar
  27. Yamada Y (2000) Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int J Syst Evol Microbiol 50:2225–2227PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Carla Jara
    • 1
  • Estibaliz Mateo
    • 1
  • José-Manuel Guillamón
    • 1
    • 2
  • Albert Mas
    • 1
  • María-Jesús Torija
    • 1
  1. 1.Oenological Biotechnology, Departament de Bioquímica i Biotecnologia, Facultat d’EnologiaUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Alimentos (CSIC)BurjassotSpain

Personalised recommendations