Annals of Microbiology

, Volume 62, Issue 4, pp 1523–1530 | Cite as

In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom

  • Li Bin
  • Li Wei
  • Chen Xiaohong
  • Jiang Mei
  • Dong MingshengEmail author
Original Article


A melanin derived from Auricularia auricula was characterized based on ultraviolet-visible (UV), infrared (IR), electron paramagnetic resonance (EPR) spectra and chemical tests. The antibiofilm activity of the isolated A. auricula melanin against Escherichia coli K-12, Pseudomonas aeruginosa PAO1 and P. fluorescens P-3 was examined using crystal violet and LIVE/DEAD BacLight staining as well as confocal laser scanning microscopy (CLSM). The results showed that A. auricula melanin could inhibit significantly biofilm formation of E. coli K-12, P. aeruginosa PAO1 and P. fluorescens P-3, while no inhibitory effects on growth were found. CLSM analysis showed that A. auricula melanin treatment resulted in thinner and looser biofilm compared with the control. The current study reveals for the first time the antibiofilm activity of melanin derived from A. auricula.


Auricularia auricula Melanin Antibiofilm Escherichia coli Pseudomonas aeruginosa Pseudomonas fluorescens 



This work was supported by Natural Science Foundation of China (No.30700627) and Agricultural Science Independent Innovation Fund of Jiangsu [No.CX (08) 113].


  1. Acharya K, Samui K, Rai M, Dutta B, Achary R (2004) Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J Exp Biol 42:538–540PubMedGoogle Scholar
  2. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  3. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290PubMedCrossRefGoogle Scholar
  4. Bilinska B (1996) Progress of infrared investigations of melanin structures. Spectrochim Acta A 52:1157–1162CrossRefGoogle Scholar
  5. Bonner TG, Duncan A (1962) Infrared spectra of some melanins. Nature 194:1078–1079PubMedCrossRefGoogle Scholar
  6. Brooun A, Liu SH, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Ch 44:640–646CrossRefGoogle Scholar
  7. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116PubMedCrossRefGoogle Scholar
  8. Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3:354–358PubMedCrossRefGoogle Scholar
  9. Chet I, Henis Y, Mitchell R (1967) Chemical composition of hyphal and sclerotial walls of Sclerotium rolfsii Sacc. Can J Bot 13:137–141Google Scholar
  10. Cheung PCK (1996) The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf ) in hypercholesterolemic rats. Nutr Res 16:1721–1725CrossRefGoogle Scholar
  11. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345PubMedCrossRefGoogle Scholar
  12. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persisitent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  13. Daniel J (1938) Studies of multiple allelomorphic series in the house mouse. 111. A spectrophotometricstudy of mouse melanin. J Genet 36:139–143CrossRefGoogle Scholar
  14. Dastager SG, Li WJ, Dayanand A, Tang SK, Tian XP, Zhi XY, Xu LH, Jiang CL (2006) Separation, identification and analysis of pigment (melanin) production in Streptomyces. Afr J Biotechnol 5:1131–1134Google Scholar
  15. Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346PubMedCrossRefGoogle Scholar
  16. Ellis DH, Griffiths DA (1974) The location and analysis of melanin in the cell walls of some soil fungi. Can J Microbiol 20:1379–1386CrossRefGoogle Scholar
  17. Enochs WS, Nilges MJ, Swartz HW (1993) A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigm Cell Res 6:91–99CrossRefGoogle Scholar
  18. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247PubMedCrossRefGoogle Scholar
  19. Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha, Pillai SD, Patil BS (2008) Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 125:204–208PubMedCrossRefGoogle Scholar
  20. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  21. Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598PubMedCrossRefGoogle Scholar
  22. Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717PubMedCrossRefGoogle Scholar
  23. Khan MS, Zahin M, Hasan S, Husain FM, Ahmad I (2009) Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clover oil. Lett Appl Microbiol 49:354–360PubMedCrossRefGoogle Scholar
  24. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158PubMedCrossRefGoogle Scholar
  25. Manning JT, Bundred PE, Henzi P (2003) Melanin and HIV in sub-Saharan Africa. J Theor Biol 223:131–133PubMedCrossRefGoogle Scholar
  26. Mencher JR, Heim AH (1962) Melanin biosynthesis by Streptomyces lavendulae. J Gen Microbiol 28:665–670CrossRefGoogle Scholar
  27. Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H (1981) Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodatemodified, branched (1 goes to 3)-beta-d-glucan of Auricularia auricula-juade, and other polysaccharides containing (1 goes 3)-glycosidic linkages. Carbohyd Res 92:115–129CrossRefGoogle Scholar
  28. Mizuno T, Saito H, Nishitoba T, Kawagishi H (1995) Antitumoractive substances from mushrooms. Food Rev Int 11:23–61CrossRefGoogle Scholar
  29. Paim S, Linhares LF, Magrich AS, Martin JP (1990) Characterization of fungal melanins and soil humic acids by chemical analysis and infrared spectroscopy. Biol Fertil Soils 10:72–76Google Scholar
  30. Percival SL, Cutting KF (2009) Biofilms: possible strategies for suppression in chronic wounds. Nurs Stand 23:64–68PubMedGoogle Scholar
  31. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904PubMedCrossRefGoogle Scholar
  32. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814PubMedCrossRefGoogle Scholar
  33. Ravishankar JP, Muruganandam V, Suryanarayanan TS (1995) Isolation and characterization of melanin from a marine fungus. Bot Mar 38:413–416CrossRefGoogle Scholar
  34. Sava VM, Galkin BN, Hong MY, Yang PC, Huang GS (2001) A novel melaninlike pigment derived from black tea leaves with immuno-stimulating activity. Food Res Int 34:337–343CrossRefGoogle Scholar
  35. Selvakumar P, Rajasekar S, Periasamy K, Raaman N (2008) Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J Microbiol Biotechnol 24:2125–2131CrossRefGoogle Scholar
  36. Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS (2004) Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol Res 108:974–978PubMedCrossRefGoogle Scholar
  37. Takeujchi H, He P, Mooi L (2004) Reductive effect of hot- water extracts from woody ear (Auricularia auricula-juade Quel.) on food intake and blood glucose concentration in genetically diabetic KK-Ay mice. J Nutr Sci Vitaminol (Tokyo) 50:300–304CrossRefGoogle Scholar
  38. Tu Y, Sun Y, Tian Y, Xie M, Chen J (2009) Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem 114:1345–1350CrossRefGoogle Scholar
  39. Wang Y, Dai Y, Zhang Y, Hu YB, Yang BY, Chen SY (2007) Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China Ser C-Life Sci 50:385–391CrossRefGoogle Scholar
  40. Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536PubMedCrossRefGoogle Scholar
  41. Wu Y, Shan L, Yang S, Ma A (2008) Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. J Basic Microb 48:217–221CrossRefGoogle Scholar
  42. Yoon SJ, Yu MA, Pyun YR, Hwang JK, Chu DC, Juneja LR, Mourão PA (2003) The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb Res 112:151–158PubMedCrossRefGoogle Scholar
  43. Zhang L, Yang L, Ding Q, Chen XF (1995) Studies on molecular weights of polysaccharides of Auricularia auricula-juade. Carbohyd Res 270:1–10CrossRefGoogle Scholar
  44. Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52(3):269–274PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2012

Authors and Affiliations

  • Li Bin
    • 1
  • Li Wei
    • 1
  • Chen Xiaohong
    • 1
  • Jiang Mei
    • 1
  • Dong Mingsheng
    • 1
    Email author
  1. 1.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations