Annals of Microbiology

, Volume 62, Issue 3, pp 1247–1253

Surveillance study of enterotoxin genes in Staphylococcus aureus isolates from goats of different slaughterhouses in Sichuan, China

  • Jun-ni Tang
  • Cheng Tang
  • Yong Wang
  • Juan Chen
  • Ji Liu
  • Lushu Liu
  • Hua Yue
Original Article


Staphylococcus aureus causes a number of diseases in humans and animals, and is the most common etiological agent of foodborne illnesses. The agent produces staphylococcal enterotoxins (SEs), which are the main cause of food poisoning. The aim of the present study was to characterize the distribution of genes encoding staphylococcal enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, sej, sek, sem, sen, ser and seu) in S. aureus strains isolated from goats slaughtered in four different slaughterhouses in Sichuan, China. The presence of the target 16S rDNA (Staphylococcus genus specific) and nuc gene (S. aureus species specific) was used to determine the isolates to be S. aureus species. Of the 19 S. aureus isolates tested, 18 (95%) were found to be positive for three or more SEs gene (3–7 SEs genes) by polymerase chain reaction (PCR) amplification. The most frequent gene was seu (17/19, 89.5%), followed by seg (14/19, 73.6%), sen (10/19, 52.6%), sei (9/19, 47.3%), and sed (9/19, 47.3%). None of the isolates harbored the genes encoding seb, see, and seh. Among the classical enterotoxigenic strains, the occurrence of sed gene was highest (47.4%) followed by ea (36.8%) and sec (31.6%). The occurrence of the newly identified enterotoxin genes (seg-seu) was higher than that of traditional genes (sea-see). According to the present results, the S. aureus strains isolated from goats seem to be, at least at this stage, of importance as vectors causing staphylococcal food poisoning.


Surveillance Staphylococcal enterotoxins Staphylococcus aureus PCR Goats 


  1. Akineden O, Annemuller C, Hassan AA, Lammler C, Wolter W, Zschock M (2001) Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin Diag Lab Immunol 8:959–964Google Scholar
  2. Aydin A, Sudagidan M, Muratoglu K (2011) Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int J Food Microbiol 148(2):99–106PubMedCrossRefGoogle Scholar
  3. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10PubMedCrossRefGoogle Scholar
  4. Bania J, Dabrowska A, Bystron J, Korzekwa K, Chrzanowska J, Molenda J (2006) Distribution of newly described enterotoxin-like genes in Staphylococcus aureus from food. Int J Food Microbiol 108:36–41PubMedCrossRefGoogle Scholar
  5. Becker K, Friedrich AW, Lubritz G, Weilert M, Peters B, von Eiff C (2003) Prevalence of genes coding pyrogenic toxin superantigens and exfoliative toxins among strains of isolated from blood and nasal specimens. J Clin Microbiol 41:1434–1439PubMedCrossRefGoogle Scholar
  6. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, Villani F (2004) PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J Appl Microbiol 97:719–730PubMedCrossRefGoogle Scholar
  7. Blaiotta G, Fusco V, von Eiff C, Villani F, Becker K (2006) Biotyping of enterotoxigenic Staphylococcus aureus by enterotoxin gene cluster (egc) polymorphism and spa typing analyses. Appl Environ Microbiol 72(9):6117–6123PubMedCrossRefGoogle Scholar
  8. Boynukara B, Gulhan T, Alisarli M, Gurturk K, Solmaz H (2008) Classical enterotoxigenic characteristics of Staphylococcus aureus strains isolated from bovine subclinical mastitis in Van, Turkey. Int J Food Microbiol 125:209–211PubMedCrossRefGoogle Scholar
  9. Chen Y, Guo YC, Wang ZT, Liu XM, Liu H, Dai Y, Tang ZZ, Wen J (2010) Foodborne disease outbreaks in 2006-report of the National Foodborne Disease Surveillance Network, China (in Chinese). J Hygiene Res 3:331–334Google Scholar
  10. Chiang YC, Liao WW, Fan CM, Pai WY, Chiou CS, Tsen HY (2008) PCR detection of Staphylococcal enterotoxins (SEs) N, O, P, Q, R, U, and survey of SE types in Staphylococcus aureus isolates from food-poisoning cases in Taiwan. Int J Food Microbiol 15:66–73CrossRefGoogle Scholar
  11. El-Huneidi W, Bdour S, Mahasneh A (2006) Detection of enterotoxin genes seg, seh, sei, and sej and of a novel aroA genotype in Jordanian clinical isolates of Staphylococcus aureus. Diagn Microb Infect Dis 56:127–132CrossRefGoogle Scholar
  12. Fueyo JM, Mendoza MC, Martín MC (2005) Enterotoxins and toxic shock syndrome toxin in Staphylococcus aureus recovered from human nasal carriers and manually handled foods: epidemiological and genetic findings. Microbes Infect 7:187–194PubMedCrossRefGoogle Scholar
  13. Gaillot O, Wetsch M, Fortineau N, Berche P (2000) Evaluation of CHROM agar Staphylococcus aureus, a new chromogenic medium for isolation and presumptive identification of Staphylococcus aureus from human clinical isolates. J Clin Microbiol 38:1587–1591PubMedGoogle Scholar
  14. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etiene J, Vandernesch F, Bonneville M, Lina G (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677PubMedGoogle Scholar
  15. Jorgensen HJ, Mork T, Hogasen HR, Rovik LM (2005) Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. J Appl Microbiol 99:158–167PubMedCrossRefGoogle Scholar
  16. Karahan M, Açik MN, Cetinkaya B (2009) Investigation of toxin genes by polymerase chain reaction in Staphylococcus aureus strains isolated from bovine mastitis in Turkey. Foodborne Path Dis 6:1029–1035PubMedCrossRefGoogle Scholar
  17. Letertre C, Perelle S, Dilasser F, Fach P (2003) Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol 95:38–42PubMedCrossRefGoogle Scholar
  18. Lim YS, Jegathesan M, Koay AS (1982) Enterotoxin production by Staphylococcus aureus strains isolated from humans, foods and animals in Malaysia. Southeast Asian J Trop Med Pub Health 13:133–137Google Scholar
  19. Lin CM, Chiang YC, Tsen HY (2009) Development and use of a chromogenic macroarray system for the detection of Staphylococcus aureus with enterotoxin A, B, C, D, E, and G genes in food and milk samples. Foodborne Path Dis 6:445–452PubMedCrossRefGoogle Scholar
  20. Loeto D, Matsheka MI, Gashe BA (2007) Enterotoxigenic and antibiotic resistance determination of Staphylococcus aureus strains isolated from food handlers in Gaborone, Botswana. J Food Prot 70:2764–2768PubMedGoogle Scholar
  21. Marrack P, Kappler J (1990) The staphylococcal enterotoxins and their relatives. Science 248:705–711PubMedCrossRefGoogle Scholar
  22. Morandi S, Brasca M, Lodi R, Cremonesi P, Castiglioni B (2007) Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products. Vet Microbiol 124:66–72PubMedCrossRefGoogle Scholar
  23. Morandi S, Brasca M, Andrighetto C, Lombardi A, Lodi R (2009) Phenotypic and genotypic characterization of staphylococcus aureus strains from Italian dairy products. Int J Microbiol 2009:501362PubMedGoogle Scholar
  24. Nashev D, Toshkova K, Salasia SIO, Hassan AA, Lammler C, Zschock M (2004) Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers. FEMS Microbiol Lett 233:45–52PubMedCrossRefGoogle Scholar
  25. Normanno G, Firinu A, Virgilio S, Mula G, Dambrosio A, Poggiu A, Decastelli L, Mioni R, Scuota S, Bolzoni G, Di Giannatale E, Salinetti AP, La Salandra G, Bartoli M, Zuccon F, Pirino T, Sias S, Parisi A, Quaglia NC, Celano GV (2005) Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int J Food Microbiol 98:73–79PubMedCrossRefGoogle Scholar
  26. Omoe K, Ishikawa M, Shimoda Y, Hudlueda S, Shinagawa K (2002) Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei gene. J Clin Microbiol 40:857–862PubMedCrossRefGoogle Scholar
  27. Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira P (2009) Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol 26:278–282PubMedCrossRefGoogle Scholar
  28. Qiu J, Wang D, Xiang H, Feng H, Jiang Y, Xia L, Dong J, Lu J, Yu L, Deng X (2010) Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates. PLoS One 5:e9736PubMedCrossRefGoogle Scholar
  29. Rahimi E, Safai HG (2010) Detection of classical enterotoxins of Staphylococcus aureus strains isolated from bovine subclinical mastitis in Isfahan. Iran Vet Microbiol 141(3–4):393–394CrossRefGoogle Scholar
  30. Rosec JP, Gigaud O (2002) Staphylococcal enterotoxin genes of classical and new types detected by PCR in France. Int J Food Microbiol 77:61–70PubMedCrossRefGoogle Scholar
  31. Schlievert PM, Jablonski LM, Roggiani M, Sadler I, Callantine S, Mitchell DT, Ohlendorf DH, Bohach GA (2000) Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect Immun 68(6):3630–36344PubMedCrossRefGoogle Scholar
  32. Su YC, Wong AC (1995) Identification and purification of a new staphylococcal enterotoxin H. Appl Environ Microbiol 61:1438–1443PubMedGoogle Scholar
  33. Tang JN, Shi XM, Shi CL, Chen HC (2006) Characterization of a duplex PCR assay for the detection of enterotoxigenic strains of Staphylococcus aureus. J Rapid Methods Auto Microbiol 14:201–217CrossRefGoogle Scholar
  34. Varshney AK, Mediavilla JR, Robiou N, Guh A, Wang X, Gialanella P, Levi MH, Kreiswirth BN, Fries BC (2009) Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York. Appl Environ Microbiol 75:6839–6849PubMedCrossRefGoogle Scholar
  35. Wang SJ, Chow LW, Wu MJ (2002) Multiplex PCR for the simultaneous detection of the SEA, SEB, SEC, SED and SEE genes of enterotoxigenic Staphylococcus aureus. J Food Drug Anal 10:164–169Google Scholar
  36. Wilson IG, Cooper JE, Gilmour A (1991) Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl Environ Microbiol 57:1793–1798PubMedGoogle Scholar
  37. Zhang S, Iandolo JJ, Stewart GC (1998) The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett 168:227–233PubMedCrossRefGoogle Scholar
  38. Zouharova M, Rysanek D (2008) Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses Public Health 55:313–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2011

Authors and Affiliations

  • Jun-ni Tang
    • 1
  • Cheng Tang
    • 1
  • Yong Wang
    • 1
  • Juan Chen
    • 1
  • Ji Liu
    • 1
  • Lushu Liu
    • 1
  • Hua Yue
    • 1
  1. 1.College of Life Science and TechnologySouthwest University for NationalitiesChengduChina

Personalised recommendations