Annals of Microbiology

, Volume 62, Issue 2, pp 449–459 | Cite as

Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal

  • Nuno Silva
  • Gilberto Igrejas
  • Alexandre Gonçalves
  • Patricia PoetaEmail author
Review Article


The gastrointestinal tract is continuously in contact with commensal bacteria that are composed of more than 500 different species, and has an important role in human nutrition and health, by promoting nutrient supply, preventing pathogen colonization and shaping and maintaining normal mucosal immunity. The present review demonstrates the distribution of the intestinal commensal bacteria Enterococcus spp. and the prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. The enterococcal population described in this review includes 1,909 enterococcal isolates recovered from a series of fecal samples of different animals (horses, swine, ostriches, partridges, mullet fish, garden dormice, seagulls, pets, poultry, wild boars, birds of prey, and wild rabbits) and healthy and clinical humans. We also compared the phylogenetic groups of Escherichia coli isolates (n = 203) recovered from healthy humans and animals (poultry, ostriches, seagulls, wild boars, birds of prey, and pigs). Phenotypic and molecular analysis allowed the identifying of Enterococcus faecium as the predominant species followed by Enterococcus faecalis. In addition, the Escherichia coli data from different studies showed that isolates of the A and B1 phylogenetic groups are predominant in the gut flora of animal origin and the phylogenetic group B2 isolates were the most common in healthy human samples.


Gastrointestinal tract Enterococcus spp. Escherichia coli Portugal 


  1. Anderson MA, Whitlock JE, Harwood VJ (2006) Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, cattle, and horses. Appl Environ Microbiol 72:6914–6922PubMedCrossRefGoogle Scholar
  2. Araújo C, Torres C, Gonçalves A, Carneiro C, López M, Radhouani H, Pardal M, Igrejas G, Poeta P (2011) Genetic detection and MLST typing of vanA-containing Enterococcus strains from mullets fish (Liza Ramada). Microb Drug Resist (in press)Google Scholar
  3. Barreto A, Guimaraes B, Radhouani H, Araujo C, Goncalves A, Gaspar E, Rodrigues J, Igrejas G, Poeta P (2009) Detection of antibiotic resistant E. coli and Enterococcus spp. in stool of healthy growing children in Portugal. J Basic Microbiol 49:503–512PubMedCrossRefGoogle Scholar
  4. Bingen E, Picard B, Brahimi N, Mathy S, Desjardins P, Elion J, Denamur E (1998) Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis 177:642–650PubMedCrossRefGoogle Scholar
  5. Carneiro C, Araujo C, Goncalves A, Vinue L, Somalo S, Ruiz E, Uliyakina I, Rodrigues J, Igrejas G, Poeta P, Torres C (2010) Detection of CTX-M-14 and TEM-52 extended-spectrum beta-lactamases in fecal Escherichia coli isolates of captive ostrich in Portugal. Foodborne Pathog Dis 7:991–994PubMedCrossRefGoogle Scholar
  6. Chenoweth C, Schaberg D (1990) The epidemiology of enterococci. Eur J Clin Microbiol Infect Dis 9:80–89PubMedCrossRefGoogle Scholar
  7. Ciftci A, Findik A, Ica T, Bas B, Onuk EE, Gungordu S (2009) Slime production and antibiotic resistance of Enterococcus faecalis isolated from arthritis in chickens. J Vet Med Sci 71:849–853PubMedCrossRefGoogle Scholar
  8. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558PubMedCrossRefGoogle Scholar
  9. Cortes P, Blanc V, Mora A, Dahbi G, Blanco JE, Blanco M, Lopez C, Andreu A, Navarro F, Alonso MP, Bou G, Blanco J, Llagostera M (2010) Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 76:2799–2805PubMedCrossRefGoogle Scholar
  10. Costa D, Vinue L, Poeta P, Coelho AC, Matos M, Saenz Y, Somalo S, Zarazaga M, Rodrigues J, Torres C (2009) Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Vet Microbiol 138:339–344PubMedCrossRefGoogle Scholar
  11. de Vaux A, Laguerre G, Diviès C, Prévost H (1998) Enterococcus asini sp. nov. isolated from the caecum of donkeys (Equus asinus). Int J Syst Bacteriol 2:383–387Google Scholar
  12. Delgado M, Neto I, Correia JH, Pomba C (2007) Antimicrobial resistance and evaluation of susceptibility testing among pathogenic enterococci isolated from dogs and cats. Int J Antimicrob Agents 30:98–100PubMedCrossRefGoogle Scholar
  13. Desai PJ, Pandit D, Mathur M, Gogate A (2001) Prevalence, identification and distribution of various species of enterococci isolated from clinical specimens with special reference to urinary tract infection in catheterized patients. Indian J Med Microbiol 19:132–137PubMedGoogle Scholar
  14. Devriese LA, Van de Kerckhove A, Kilpper-Bälz R, Schleifer KH, Phillips BA (1987) Characterization of and identification of Enterococcus species isolated from animals. Int J Syst Bacteriol 37:257–259CrossRefGoogle Scholar
  15. Devriese LA, Ceyssens K, Rodrigues UM, Collins MD (1990) Enterococcus columbae, a species from pigeon intestines. FEMS Microbiol Lett 59:247–251PubMedCrossRefGoogle Scholar
  16. Devriese LA, Ducatelle R, Uyttebroek E, Haesebrouck F (1991) Enterococcus hirae infection and focal necrosis of the brain of chicks. Vet Rec 129:316PubMedCrossRefGoogle Scholar
  17. Devriese LA, Cruz Colque JI, De Herdt P, Haesebrouck F (1992a) Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats. J Appl Bacteriol 73:421–425PubMedCrossRefGoogle Scholar
  18. Devriese LA, Laurier L, Herdt PD, Haesebrouck F (1992b) Enterococcal and streptococcal species isolated from faeces of calves, young cattle and dairy cows. J Appl Microbiol 72:29–31Google Scholar
  19. Devriese LA, Hommez J, Pot B, Haesebrouck F (1994) Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs. J Appl Microbiol 77:31–36CrossRefGoogle Scholar
  20. Devriese LA, Baele M, Butaye P (2006) The genus Enterococcus. In: Dworkin M, Falkow S, Rosenberg E, Schliefer KH, Stackebrandt E (eds) The Prokaryotes, 3rd edn. Springer, New York, pp 163–174CrossRefGoogle Scholar
  21. Duriez P, Clermont O, Bonacorsi S, Bingen E, Chaventre A, Elion J, Picard B, Denamur E (2001) Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology 147:1671–1676PubMedGoogle Scholar
  22. Dutka-Malen S, Evers S, Courvalin P (1995) Detectionof glycopeptide resistance genotypes and identificationto the species level of clinically relevant enterococciby PCR. J Clin Microbiol 33:24–27Google Scholar
  23. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635PubMedCrossRefGoogle Scholar
  24. Firmesse O, Rabot S, Bermúdez-Humarán LG, Corthier G, Furet JP (2007) Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota. FEMS Microbiol Lett 276:189–192PubMedCrossRefGoogle Scholar
  25. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24PubMedCrossRefGoogle Scholar
  26. Franz CM, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24PubMedCrossRefGoogle Scholar
  27. Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH (2001) Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol 67:4385–4389PubMedCrossRefGoogle Scholar
  28. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods–a conundrum for food safety. Int J Food Microbiol 88:105–122PubMedCrossRefGoogle Scholar
  29. Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310PubMedCrossRefGoogle Scholar
  30. Gin AS, Zhanel GG (1996) Vancomycin-resistant enterococci. Ann Pharmacother 30:615–624PubMedGoogle Scholar
  31. Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785–1791PubMedGoogle Scholar
  32. Gonçalves A, Poeta P, Silva N, Araujo C, Lopez M, Ruiz E, Uliyakina I, Direitinho J, Igrejas G, Torres C (2010a) Characterization of vancomycin-resistant enterococci isolated from fecal samples of ostriches by molecular methods. Foodborne Pathog Dis 7:1133–1136PubMedCrossRefGoogle Scholar
  33. Gonçalves A, Torres C, Silva N, Carneiro C, Radhouani H, Coelho C, Araujo C, Rodrigues J, Vinue L, Somalo S, Poeta P, Igrejas G (2010b) Genetic characterization of extended-spectrum beta-lactamases in Escherichia coli isolates of pigs from a Portuguese intensive swine farm. Foodborne Pathog Dis (in press)Google Scholar
  34. Gordon DM (1997) The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143:2039–2046PubMedCrossRefGoogle Scholar
  35. Graves A, Weaver RW, Entry J (2009) Characterization of enterococci populations in livestock manure using BIOLOG. Microbiol Res 164:260–266PubMedCrossRefGoogle Scholar
  36. Guimaraes B, Barreto A, Radhouani H, Figueiredo N, Gaspar E, Rodrigues J, Torres C, Igrejas G, Poeta P (2009) Genetic detection of extended-spectrum beta-lactamase-containing Escherichia coli isolates and vancomycin-resistant enterococci in fecal samples of healthy children. Microb Drug Resist 15:211–216PubMedCrossRefGoogle Scholar
  37. Hamilton-Miller JM, Shah S (1999) Identification of clinically isolated vancomycin-resistant enterococci: comparison of API and BBL Crystal systems. J Med Microbiol 48:695–696PubMedCrossRefGoogle Scholar
  38. Hancock V, Dahl M, Klemm P (2010) Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol 59:392–399PubMedCrossRefGoogle Scholar
  39. Herzer PJ, Inouye S, Inouye M, Whittam TS (1990) Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 172:6175–6181PubMedGoogle Scholar
  40. Hilali F, Ruimy R, Saulnier P, Barnabe C, Lebouguenec C, Tibayrenc M, Andremont A (2000) Prevalence of virulence genes and clonality in Escherichia coli strains that cause bacteremia in cancer patients. Infect Immun 68:3983–3989PubMedCrossRefGoogle Scholar
  41. Jenkins MB, Hartel PG, Olexa TJ, Stuedemann JA (2003) Putative temporal variability of Escherichia coli ribotypes from yearling steers. J Environ Qual 32:305–309PubMedCrossRefGoogle Scholar
  42. Johnson JR, Goullet P, Picard B, Moseley SL, Roberts PL, Stamm WE (1991) Association of carboxylesterase B electrophoretic pattern with presence and expression of urovirulence factor determinants and antimicrobial resistance among strains of Escherichia coli that cause urosepsis. Infect Immun 59:2311–2315PubMedGoogle Scholar
  43. Kamada N, Inoue N, Hisamatsu T, Okamoto S, Matsuoka K, Sato T, Chinen H, Hong KS, Yamada T, Suzuki Y, Suzuki T, Watanabe N, Tsuchimoto K, Hibi T (2005) Nonpathogenic Escherichia coli strain Nissle 1917 prevents murine acute and chronic colitis. Inflamm Bowel Dis 11:455–463PubMedCrossRefGoogle Scholar
  44. Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131PubMedCrossRefGoogle Scholar
  45. Kruis W, Schutz E, Fric P, Fixa B, Judmaier G, Stolte M (1997) Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11:853–858PubMedCrossRefGoogle Scholar
  46. Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, Aarestrup F, Seyfarth AM, Blanch AR, Taylor H, Caplin J, Moreno MA, Dominguez L, Mollby R (2000) Epidemiology and ecology of enterococci, with special reference to antibiotic resistant strains, in animals, humans and the environment. Example of an ongoing project within the European research programme. Int J Antimicrob Agents 14:337–342PubMedCrossRefGoogle Scholar
  47. Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, Aarestrup F, Seyfarth AM, Blanch AR, Vilanova X, Taylor H, Caplin J, Moreno MA, Dominguez L, Herrero IA, Mollby R (2003) Comparison of enterococcal populations in animals, humans, and the environment–a European study. Int J Food Microbiol 88:133–145PubMedCrossRefGoogle Scholar
  48. Laukova A, Simonova M, Strompfova V, Styriak I, Ouwehand AC, Varady M (2008) Potential of enterococci isolated from horses. Anaerobe 14:234–236PubMedCrossRefGoogle Scholar
  49. Layton BA, Walters SP, Lam LH, Boehm AB (2010) Enterococcus Species Distribution among Human and Animal Hosts Using Multiplex Pcr. J Appl Microbiol 109:539–547PubMedGoogle Scholar
  50. Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS (2009) Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun 77:2876–2886PubMedCrossRefGoogle Scholar
  51. Leclerc H, Mossel DA, Edberg SC, Struijk CB (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234PubMedCrossRefGoogle Scholar
  52. Lee S, Yu JK, Park K, Oh EJ, Kim SY, Park YJ (2010) Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. Ann Clin Lab Sci 40:361–367PubMedGoogle Scholar
  53. Linaje R, Coloma MD, Perez-Martinez G, Zuniga M (2004) Characterization of faecal enterococci from rabbits for the selection of probiotic strains. J Appl Microbiol 96:761–771PubMedCrossRefGoogle Scholar
  54. Machado E, Coque TM, Canton R, Sousa JC, Peixe L (2008) Antibiotic resistance integrons and extended-spectrum {beta}-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J Antimicrob Chemother 62:296–302PubMedCrossRefGoogle Scholar
  55. Malchow HA (1997) Crohn's disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn's disease? J Clin Gastroenterol 25:653–658PubMedCrossRefGoogle Scholar
  56. Miele A, Bandera M, Goldstein BP (1995) Use of primersselective for vancomycin resistance genes to determine vangenotype in enterococci and to study gene organization in VanAisolates. Antimicrob Agents Chemother 39:1772–1778Google Scholar
  57. Molina M, Cyterski M, Maimes J, Fisher J, Johnson B (2007) Comparison of the temporal variability of enterococcal clusters in impacted streams using a multiplex polymerase chain reaction procedure. In proceedings, Georgia Water Resources Conference, Athens GA. Georgia institute of technology, Atlanta, GA 1–4Google Scholar
  58. Moura I, Radhouani H, Torres C, Poeta P, Igrejas G (2010) Detection and genetic characterisation of vanA-containing Enterococcus strains in healthy Lusitano horses. Equine Vet J 42:181–183PubMedCrossRefGoogle Scholar
  59. Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65PubMedGoogle Scholar
  60. Noble CJ (1978) Carriage of group D streptococci in the human bowel. J Clin Pathol 31:1182–1186PubMedCrossRefGoogle Scholar
  61. Novais C, Sousa JC, Coque TM, Peixe LV (2003) First report of the activity of linezolid against Portuguese enterococci from human, animal and environmental sources. J Antimicrob Chemother 51:1314–1315PubMedCrossRefGoogle Scholar
  62. Novais C, Coque TM, Sousa JC, Peixe LV (2006) Antimicrobial resistance among faecal enterococci from healthy individuals in Portugal. Clin Microbiol Infect 12:1131–1134PubMedCrossRefGoogle Scholar
  63. Novais C, Freitas AR, Sousa JC, Baquero F, Coque TM, Peixe LV (2008) Diversity of Tn1546 and its role in the dissemination of vancomycin-resistant enterococci in Portugal. Antimicrob Agents Chemother 52:1001–1008PubMedCrossRefGoogle Scholar
  64. Patterson JE, Sweeney AH, Simms M, Carley N, Mangi R, Sabetta J, Lyons RW (1995) An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine (Baltimore) 74:191–200CrossRefGoogle Scholar
  65. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E (1999) The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67:546–553PubMedGoogle Scholar
  66. Pinto L, Radhouani H, Coelho C, Martins da Costa P, Simoes R, Brandao RM, Torres C, Igrejas G, Poeta P (2010) Genetic detection of extended-spectrum beta-lactamase-containing Escherichia coli isolates from birds of prey from Serra da Estrela Natural Reserve in Portugal. Appl Environ Microbiol 76:4118–4120PubMedCrossRefGoogle Scholar
  67. Poeta P, Costa D, Rodrigues J, Torres C (2005a) Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. J Antimicrob Chemother 55:278–280PubMedCrossRefGoogle Scholar
  68. Poeta P, Costa D, Saenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C (2005b) Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 52:396–402PubMedCrossRefGoogle Scholar
  69. Poeta P, Costa D, Rodrigues J, Torres C (2006a) Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal. Int J Antimicrob Agents 27:131–137PubMedCrossRefGoogle Scholar
  70. Poeta P, Costa D, Rodrigues J, Torres C (2006b) Detection of genes encoding virulence factors and bacteriocins in fecal enterococci of poultry in Portugal. Avian Dis 50:64–68PubMedCrossRefGoogle Scholar
  71. Poeta P, Costa D, Igrejas G, Rodrigues J, Torres C (2007a) Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet Microbiol 125:368–374PubMedCrossRefGoogle Scholar
  72. Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007b) Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol Res 162:257–263PubMedCrossRefGoogle Scholar
  73. Poeta P, Radhouani H, Igrejas G, Goncalves A, Carvalho C, Rodrigues J, Vinue L, Somalo S, Torres C (2008) Seagulls of the Berlengas natural reserve of Portugal as carriers of fecal Escherichia coli harboring CTX-M and TEM extended-spectrum beta-lactamases. Appl Environ Microbiol 74:7439–7441PubMedCrossRefGoogle Scholar
  74. Poeta P, Radhouani H, Pinto L, Martinho A, Rego V, Rodrigues R, Goncalves A, Rodrigues J, Estepa V, Torres C, Igrejas G (2009) Wild boars as reservoirs of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli of different phylogenetic groups. J Basic Microbiol 49:584–588PubMedCrossRefGoogle Scholar
  75. Pupo GM, Karaolis DK, Lan R, Reeves PR (1997) Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65:2685–2692PubMedGoogle Scholar
  76. Radhouani H, Poeta P, Igrejas G, Goncalves A, Vinue L, Torres C (2009) Antimicrobial resistance and phylogenetic groups in isolates of Escherichia coli from seagulls at the Berlengas nature reserve. Vet Rec 165:138–142PubMedCrossRefGoogle Scholar
  77. Radhouani H, Pinto L, Coelho C, Goncalves A, Sargo R, Torres C, Igrejas G, Poeta P (2010a) Detection of Escherichia coli harbouring extended-spectrum {beta}-lactamases of the CTX-M classes in faecal samples of common buzzards (Buteo buteo). J Antimicrob Chemother 65:171–173PubMedCrossRefGoogle Scholar
  78. Radhouani H, Poeta P, Pinto L, Miranda J, Coelho C, Carvalho C, Rodrigues J, Lopez M, Torres C, Vitorino R, Domingues P, Igrejas G (2010b) Proteomic characterization of vanA-containing Enterococcus recovered from Seagulls at the Berlengas Natural Reserve. W Portugal Proteome Sci 8:48Google Scholar
  79. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354:635–639PubMedCrossRefGoogle Scholar
  80. Robredo B, Singh KV, Baquero F, Murray BE, Torres C(1999) From vanA Enterococcus hirae to vanA Enterococcusfaecium: a study of feed supplementation with avoparcin andtylosin in young chickens. Antimicrob Agents Chemother 43:1137–1143Google Scholar
  81. Rodrigues J, Poeta P, Martins A, Costa D (2002) The importance of pets as reservoirs of resistant Enterococcus strains, with special reference to vancomycin. J Vet Med B Infect Dis Vet Public Health 49:278–280PubMedCrossRefGoogle Scholar
  82. Ruoff KL, de la Maza L, Murtagh MJ, Spargo JD, Ferraro MJ (1990) Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 28:435–437PubMedGoogle Scholar
  83. Saavedra JM (2001) Clinical applications of probiotic agents. Am J Clin Nutr 73:1147S–1151SPubMedGoogle Scholar
  84. Saenz Y, Brinas L, Dominguez E, Ruiz J, Zarazaga M, Vila J, Torres C (2004) Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother 48:3996–4001PubMedCrossRefGoogle Scholar
  85. Sartor RB (2005) Probiotic therapy of intestinal inflammation and infections. Curr Opin Gastroenterol 21:44–50PubMedGoogle Scholar
  86. Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial etiology of nosocomial infection. Am J Med 91:72S–75SPubMedCrossRefGoogle Scholar
  87. Schouten MA, Voss A, Hoogkamp-Korstanje JA (1999) Antimicrobial susceptibility patterns of enterococci causing infections in Europe. The European VRE Study Group. Antimicrob Agents Chemother 43:2542–2546PubMedGoogle Scholar
  88. Shepard BD, Gilmore MS (2002) Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect 4:215–224PubMedCrossRefGoogle Scholar
  89. Silva N, Igrejas G, Figueiredo N, Goncalves A, Radhouani H, Rodrigues J, Poeta P (2010) Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci Total Environ 408:4871–4876PubMedCrossRefGoogle Scholar
  90. Silva N, Igrejas G, Vaz V, Araújo C, Cardoso L, Rodrigues J, Torres C, Poeta P (2011) Virulence factors in enterococci from partridges (Alectoris rufa) representing a food safety problem. Foodborne Pathog Dis 8:831–833Google Scholar
  91. Sorum H, Sunde M (2001) Resistance to antibiotics in the normal flora of animals. Vet Res 32:227–241PubMedCrossRefGoogle Scholar
  92. Stark PL, Lee A (1982) The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol 15:198–203CrossRefGoogle Scholar
  93. Takahashi K (2010) Interaction between the intestinal immune system and commensal bacteria and its effect on the regulation of allergic reactions. Biosci Biotechnol Biochem 74:691–695PubMedCrossRefGoogle Scholar
  94. Tannock GW (1997) Modification of the normal microbiota by diet, stress, antimicrobial agents and probiotics. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology, vol 2, Gastrointestinal microbes and host interactions. Chapman and Hall, New York, pp 434–465CrossRefGoogle Scholar
  95. Todorov SD, Wachsman M, Tome E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterisation of an Antiviral Pediocin-Like Bacteriocin Produced by Enterococcus faecium. Food Microbiol 27:869–879PubMedCrossRefGoogle Scholar
  96. Tyrrell GJ, Bethune RN, Willey B, Low DE (1997) Species identification of enterococci via intergenic ribosomal PCR. J Clin Microbiol 35:1054–1060PubMedGoogle Scholar
  97. van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335PubMedCrossRefGoogle Scholar
  98. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479PubMedCrossRefGoogle Scholar
  99. Wachsman MB, Farias ME, Takeda E, Sesma F, De Ruiz Holgado AP, De Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL35 against herpesviruses. Int J Antimicrob Agents 12:293–299PubMedCrossRefGoogle Scholar
  100. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2011

Authors and Affiliations

  • Nuno Silva
    • 1
  • Gilberto Igrejas
    • 2
    • 3
  • Alexandre Gonçalves
    • 2
    • 4
  • Patricia Poeta
    • 1
    • 4
    Email author
  1. 1.Centre of Studies of Animal and Veterinary SciencesVila RealPortugal
  2. 2.Institute for Biotechnology and Bioengineering, Centre of Genomics and BiotechnologyUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Department of Genetics and BiotechnologyUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  4. 4.Veterinary Science DepartmentUniversity of Trás-os-Montes and Alto DouroVila RealPortugal

Personalised recommendations