Advertisement

Annals of Microbiology

, Volume 62, Issue 2, pp 849–859 | Cite as

Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria

  • Yuzo Yamada
  • Pattaraporn Yukphan
  • Huong Thi Lan Vu
  • Yuki Muramatsu
  • Duangjai Ochaikul
  • Yasuyoshi Nakagawa
Short Communication

Abstract

The genus Gluconacetobacter is divided into two groups phylogenetically, phenotypically and ecologically: the Gluconacetobacter liquefaciens group and the Gluconacetobacter xylinus group. For the latter group, the genus Komagatabacter is newly introduced, and the type species of the new genus is designated as Komagatabacter xylinus (Brown 1886) comb. nov. Twelve species of the Gluconacetobacter xylinus group are transferred to the new genus as new combinations.

Keywords

Gluconacetobacter Komagatabacter gen. nov. Komagatabacter xylinus comb. nov. Acetic acid bacteria Acetobacteraceae 

References

  1. Asai T, Iizuka H, Komagata K (1964) The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126CrossRefGoogle Scholar
  2. Boesch C, Trček J, Sievers M, Teuber M (1998) Acetobacter intermedius sp. nov. Syst Appl Microbiol 21:220–229PubMedCrossRefGoogle Scholar
  3. Cleenwerck I, De Wachter M, González Á, De Vuyst L, De Vos P (2009) Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 59:1771–1786PubMedCrossRefGoogle Scholar
  4. Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucroferementans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60:2277–2283PubMedCrossRefGoogle Scholar
  5. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370PubMedCrossRefGoogle Scholar
  6. Dutta D, Gachhui R (2007) Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 57:353–357PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E, Sly LI (1999) Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49:1681–1693PubMedCrossRefGoogle Scholar
  11. Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernández A, Jiménes-Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314PubMedGoogle Scholar
  12. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Döbereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364CrossRefGoogle Scholar
  13. Gosselé F, Swings J, Kersters K, Pauwels P, De Ley J (1983) Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 4:338–368CrossRefGoogle Scholar
  14. Greenberg DE, Porcella SF, Stock F, Wong A, Conville PS, Murray PR, Holland SM, Zelazny AM (2006) Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56:2609–2616PubMedCrossRefGoogle Scholar
  15. Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S, Fudou R (2004) Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267PubMedCrossRefGoogle Scholar
  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  17. Leifson E (1954) The flagellation and taxonomy of species of Acetobacter. Antonie Van Leeuwenhoek 20:102–110PubMedCrossRefGoogle Scholar
  18. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov. and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46:147–165PubMedCrossRefGoogle Scholar
  19. Lisdiyanti P, Kawasaki H, Widyastuti Y, Saono S, Seki T, Yamada Y, Uchimura T, Komagata K (2002) Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52:813–818PubMedCrossRefGoogle Scholar
  20. Lisdiyanti P, Navarro RR, Uchimura T, Komagata K (2006) Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 56:2101–2111PubMedCrossRefGoogle Scholar
  21. Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190PubMedCrossRefGoogle Scholar
  22. Navarro RR, Komagata K (1999) Differentiation of Gluconacetobcter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness and oxidation products from glucose. J Gen Appl Microbiol 45:7–15PubMedCrossRefGoogle Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  24. Schüller G, Hertel C, Hammes WP (2000) Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50:2013–2020PubMedCrossRefGoogle Scholar
  25. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392CrossRefGoogle Scholar
  26. Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940PubMedCrossRefGoogle Scholar
  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  28. Tanaka M, Murakami S, Shinke R, Aoki K (2000) Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus. Biosci Biotechnol Biochem 64:757–760PubMedCrossRefGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  30. Toyosaki H, Kojima Y, Tsuchida T, Hoshino K, Yamada Y, Yoshinaga F (1995) The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 41:307–314CrossRefGoogle Scholar
  31. Yamada Y (1976) Characterization of Acetobacter xylinum by ubiquinone system. J Gen Appl Microbiol 22:285–292CrossRefGoogle Scholar
  32. Yamada Y (1983) Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J Gen Appl Microbiol 29:417–420CrossRefGoogle Scholar
  33. Yamada Y (2000) Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int J Syst Evol Microbiol 50:2225–2227PubMedCrossRefGoogle Scholar
  34. Yamada Y, Kondo K (1985) Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. J Gen Appl Microbiol 30:297–303CrossRefGoogle Scholar
  35. Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24PubMedCrossRefGoogle Scholar
  36. Yamada Y, Aida K, Uemura T (1969) Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15:186–196CrossRefGoogle Scholar
  37. Yamada Y, Okada Y, Kondo K (1976) Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22:237–245CrossRefGoogle Scholar
  38. Yamada Y, Ishikawa T, Yamashita M, Tahara Y, Yamasato K, Kaneko T (1981) Deoxyribonucleic acid base composition and deoxyribonucleic acid homology in acetic acid bacteria, especially in the polarly flagellated intermediate strains. J Gen Appl Microbiol 27:465–475CrossRefGoogle Scholar
  39. Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251PubMedCrossRefGoogle Scholar
  40. Yamada Y, Hoshino K, Ishikawa T (1998) Validation list no. 64. Validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 48:327–328CrossRefGoogle Scholar
  41. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S, Seki T, Uchimura T, Komagata K (2000) Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50:823–829PubMedCrossRefGoogle Scholar
  42. Yukphan P, Malimas T, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y (2005) Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 51:301–311PubMedCrossRefGoogle Scholar
  43. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Tanasupawat S, Nakagawa Y, Suzuki K, Potacharoen W, Yamada Y (2008) Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the α-Proteobacteria. Biosci Biotechnol Biochem 72:672–676PubMedCrossRefGoogle Scholar
  44. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Hamana K, Tahara Y, Suzuki K, Tanticharoen M, Yamada Y (2009) Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α-Proteobacteria. Biosci Biotechnol Biochem 73:2156–2162PubMedCrossRefGoogle Scholar
  45. Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2011) Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. Biosci Biotechnol Biochem 75:419–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2011

Authors and Affiliations

  • Yuzo Yamada
    • 1
    • 5
    • 6
  • Pattaraporn Yukphan
    • 1
  • Huong Thi Lan Vu
    • 2
  • Yuki Muramatsu
    • 3
  • Duangjai Ochaikul
    • 4
  • Yasuyoshi Nakagawa
    • 3
  1. 1.BIOTEC Culture Collection, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyKlong Luang, PathumthaniThailand
  2. 2.Department of Microbiology, Faculty of Biology, University of SciencesVietnam National University–HCMCHochiminh CityVietnam
  3. 3.NITE Biological Resource CenterNational Institute of Technology and EvaluationKisarazuJapan
  4. 4.Department of Biology, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangLadkrabang, BangkokThailand
  5. 5.JICA Senior Overseas VolunteerJapan International Cooperation AgencyShibuya-ku, TokyoJapan
  6. 6.Professor EmeritusShizuoka UniversitySuruga-ku, ShizuokaJapan

Personalised recommendations