Annals of Microbiology

, Volume 61, Issue 4, pp 699–708 | Cite as

Enterocins of Enterococcus faecium, emerging natural food preservatives

  • Adeel Javed
  • Tariq Masud
  • Qurat ul Ain
  • Mohmmad Imran
  • Shabana Maqsood
Review

Abstract

Enterococci are distinct lactic acid bacteria, and also natural inhabitants of human and animal intestinal tracts. They may enter food products during processing through direct or indirect contamination and are mostly present in fermented food products, such as cheese, sausages, olives, etc. Nowadays, they are extensively studied for the production of bacteriocins (enterocins), which prevent the growth of many food-borne and spoilage-causing pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas spp., Bacillus spp. and Clostridium spp. Enterocins belong to class I, class IIa, class IIc, and class III of bacteriocins. Enterocins can be used in different food products in order to enhance their shelf life because they are heat stable and show activity over wide pH range. Enterocins are effective as well as safe to be used in the food system because they are "generally recognized as safe" (GRAS). Enterococcus faecium and Enterococcus faecalis are the predominant bacteriocin-producing species of Enterococcus in food products. The following review is focused on the bacteriocin-producing strains of Enterococcus faecium isolated from different traditional fermented food products. The aim of this review is to cover general features of the enterocins of Enterococcus faecium, the attempts made to purify them, and their potential application in different food products to improve their overall safety.

Keywords

Enterococcus faecium Enterocin Bacteriocin Food preservation 

References

  1. Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martinez-Canamero M, Galvez A (2005) Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 28:383–397PubMedCrossRefGoogle Scholar
  2. Achemchem F, Martinez-Bueno M, Abrini J, Valdivia E, Maqueda M (2005) Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat’s cheese made in Morocco. J Appl Microbiol 99:141–150PubMedCrossRefGoogle Scholar
  3. Achemchem F, Abrini J, Martínez-Bueno M, Valdivia E, Maqueda M (2006) Control of Listeria monocytogenes in goat's milk and goat's Jben by the bacteriocinogenic Enterococcus faecium F58 strain. J Food Prot 69:2370–2376PubMedGoogle Scholar
  4. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682PubMedGoogle Scholar
  5. Aymerich T, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Prot 63:721–726PubMedGoogle Scholar
  6. Balla E, Dicks LMT, du Toit, van der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE1071. Appl Environ Microbiol 66:1298–1304PubMedCrossRefGoogle Scholar
  7. Bennik MHJ, Vanloo B, Brasseur R, Gorris LGM, Smid EJ (1998) A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim Biophys Acta 1373:47–58PubMedCrossRefGoogle Scholar
  8. Benyacoub J, Czarnecki-Maulden GL, Cavadini C, Sauthier T, Anderson RE, Schiffrin EJ, von der Weid T (2003) Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs. J Nutr 133:1158–1162PubMedGoogle Scholar
  9. Booth MC, Bogie CP, Sahl HG, Siezen RL, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184PubMedCrossRefGoogle Scholar
  10. Callewaert R, Hugas M, De Vuyst L (2000) Competitivenessand bacteriocin production of Enterococci in the production ofspanish-style dry fermented sausages. Int J Food Microbiol 57:33–42Google Scholar
  11. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernandez PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294PubMedCrossRefGoogle Scholar
  12. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330PubMedGoogle Scholar
  13. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994PubMedGoogle Scholar
  14. Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez P, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814PubMedCrossRefGoogle Scholar
  15. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20PubMedCrossRefGoogle Scholar
  16. Delves-Broughton J (2005) Nisin as a food preservative. Food Aust 57:525–527Google Scholar
  17. Devriese LA, Pot B (1995) The genus Enterococcus. In: Wood BJB, Holzapfel WH (eds) The lactic acid bacteria. The genera of lactic acid bacteria, vol 2. Blackie, London, pp 327–367CrossRefGoogle Scholar
  18. De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie, London, pp 91–142Google Scholar
  19. Ennahar S, Deschamps N (2000) Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J Appl Microbiol 88:449–457PubMedCrossRefGoogle Scholar
  20. Ennahar S, Aoude-Werner D, Assobhei O, Hasselmann C (1998) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J Appl Microbiol 85:521–526PubMedCrossRefGoogle Scholar
  21. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106PubMedCrossRefGoogle Scholar
  22. Ennahar S, Asou Y, Zend T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301PubMedCrossRefGoogle Scholar
  23. Farias ME, de Ruiz Holgado AP, Sesma F (1994) Bacteriocin production by lactic acid bacteria isolated from regional cheeses: inhibition of foodborne pathogens. J Food Prot 57:1013–1015Google Scholar
  24. Farias ME, Faria RN, de Ruiz Holgado AP, Sesma F (1996) Purification and N-terminal amino acid sequence of enterocin CRL 35, a ‘pediocin-like’ bacteriocin produced by Enterococcus faecium CRL 35. Lett Appl Microbiol 22:417–419PubMedCrossRefGoogle Scholar
  25. Floriano B, Ruiz-Barba JL, Jimenez-Diaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890PubMedGoogle Scholar
  26. Foulquie Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003a) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229PubMedCrossRefGoogle Scholar
  27. Foulquie Moreno MR, Rea MC, Cogan TM, De Vuyst L (2003b) Applicability of a bacteriocin producing Enterococcus faecium as co-culture in Cheddar cheese manufacture. Int J Food Microbiol 81:73–84PubMedCrossRefGoogle Scholar
  28. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24PubMedCrossRefGoogle Scholar
  29. Franz CMAP, Schillinger U, Holzapfel WH (1996) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270PubMedCrossRefGoogle Scholar
  30. Franz CMAP, Holzapfel WH, Stiles ME (1999a) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24PubMedCrossRefGoogle Scholar
  31. Franz CMAP, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999b) A typical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178PubMedGoogle Scholar
  32. Franz CMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310PubMedCrossRefGoogle Scholar
  33. Galvez A, Gimenez-Gallego G, Maqueda M, Valdivia E (1989) Purification and amino acid composition of peptide antibiotic AS-48 produced by Streptococcus (Enterococcus) faecalis ssp. liquefaciens S-48. Antimicro Agents Chemo 33:437–441Google Scholar
  34. Galvez A, Valdivia E, Abriouel H, Camafeita E, Mendez E, Martinez-Bueno M, Maqueda M (1998) Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol 171:59–65PubMedCrossRefGoogle Scholar
  35. Garvie EI, Farrow JAE (1981) Sub-divisions within the genus Streptococcus using deoxyribonucleic acid/ribosomal ribonucleic acid hybridization. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt1, 2:299–310Google Scholar
  36. Ghrairi T, Frere J, Berjeaud JM, Manai M (2008) Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control 19:162–169CrossRefGoogle Scholar
  37. Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 26:163–171PubMedCrossRefGoogle Scholar
  38. Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222PubMedCrossRefGoogle Scholar
  39. Giraffa G, Carminati D (1997) Control of Listeria monocytogenes in the rind of Taleggio, a surface-smear cheese, by a bacteriocin from Enterococcus faecium 7C5. Sciences Des Aliments 17:383–391Google Scholar
  40. Hardie JM, Whiley RA (1997) Classification and overview of the genera Streptococcus and Enterococcus. Soc Appl Bacteriol Symp Ser 26:1S–11SPubMedGoogle Scholar
  41. Herranz C, Mukhopadhyay S, Casaus P, Martinez JM, Rodriguez JM, Nes IF, Cintas LM, Hernandez PE (1999) Biochemical and genetic evidence of enterocin P production by two Enterococcus faecium-like strains isolated from fermented sausages. Curr Microbiol 39:282–290PubMedCrossRefGoogle Scholar
  42. Herranz C, Mukhopadhyay S, Casaus P, Martinez JM, Rodriguez JM, Nes IF, Hernandez PE, Cintas LM (2001) Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol 18:115–131CrossRefGoogle Scholar
  43. Hickey RM, Twomey DP, Ross RP, Hill C (2003) Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149:655–664PubMedCrossRefGoogle Scholar
  44. Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20PubMedCrossRefGoogle Scholar
  45. Javed I, Safia A, Srikanth M, Mariam R, Bashir A, Ishtiaq AM, Abdul H, Jilani CG (2010) Production, characterization, and antimicrobial activity of a bacteriocin from newly isolated Enterococcus faecium IJ-31. J Food Prot 73:44–52PubMedGoogle Scholar
  46. Kalina AP (1970) The taxonomy and nomenclature of enterococci. Int J Syst Bacteriol 20:185–189CrossRefGoogle Scholar
  47. Kilpper-Balz R, Schleifer KH (1981) DNA-rRNA hybridization studies among staphylococci and some other Gram-positive bacteria. FEMS Microbiol Lett 10:357–362Google Scholar
  48. Kilpper-Balz R, Schleifer KH (1984) Nucleic acid hybrdization and cell wall composition studies of pyogenic streptococci. FEMS Microbiol Lett 24:355–364Google Scholar
  49. Kilpper-Balz R, Fischer G, Schleifer KH (1982) Nucleic acid hybrdization of group N and group D streptococci. Curr Microbiol 7:245–250CrossRefGoogle Scholar
  50. Kjems E (1955) Studies on streptococcal bacteriophages: I. Techniques for isolating phage producing strains. Pathol Microbiol Scand 36:433–440CrossRefGoogle Scholar
  51. Kramer J, Brandis H (1975) Mode of action of two Streptococcus faecium bacteriocins. Antimicro Agents Chemo 7:117–120Google Scholar
  52. Leroy F, Foulquie Moreno MR, De Vuyst L (2003) Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int J Food Microbiol 88:235–240PubMedCrossRefGoogle Scholar
  53. Linaje R, Coloma MD, Ge P, Zuniga M (2004) Characterization of fecal enterococci from rabbits for the selection of probiotic strains. J Appl Microbiol 96:761–771PubMedCrossRefGoogle Scholar
  54. Losteinkit Ch, Uchiyama K, Ochi S, Takaoka T, Nagahisa K, Shioya S (2001) Characterization of bacteriocin N15 produced by Enterococcus faecium N15 and cloning of the related genes. J Biosci Bioeng 91:390–395PubMedCrossRefGoogle Scholar
  55. Ludwig W, Seewaldt E, Kilpper-Balz R, Heinz, K, Magrum L, Woese CR, Fox GE, Stackebrandt E (1985)The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol 131:543–551Google Scholar
  56. Martinez-Bueno M, Maqueda M, Galvez A, Samyn B, van Beeumen J, Coyette J (1994) Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48. J Bacteriol 176:6334–6339PubMedGoogle Scholar
  57. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308PubMedCrossRefGoogle Scholar
  58. Moll GN, Konings WN, Driessen JM (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Leeuwenhoek 76:185–198PubMedCrossRefGoogle Scholar
  59. Moreno MRF, Leisner JJ, Tee LK, Radu S, Rusul G, Vancanneyt M, De Vuyst L (2002) Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J Appl Microbiol 92:147–157PubMedCrossRefGoogle Scholar
  60. Mundt OJ (1976) Streptococci in dried and in frozen foods. J Milk Food Technol 36:364–367Google Scholar
  61. Mundt OJ (1986) Enterococci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1063–1065Google Scholar
  62. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall degrading bacteriocin from i LMG 2333. Appl Environ Microbiol 69:2975–2984PubMedCrossRefGoogle Scholar
  63. O’Keeffe T, Hill C, Ross RP (1999) Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515PubMedGoogle Scholar
  64. Olasupo NA, Schillinger U, Franz CM, Holzapfel WH (1994) Bacteriocin production by Enterococcus faecium NA01 from “wara”, a fermented skimmed cow milk product from West Africa. Lett Appl Microbiol 19:438–441PubMedCrossRefGoogle Scholar
  65. Orla-Jensen S (1919) The lactic acid bacteria. Mem R Acad Sci Denmark Sci Ser 85:81–197Google Scholar
  66. Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364PubMedCrossRefGoogle Scholar
  67. Saavedra L, Maria PT, Fernando S, Graciela FDV (2003) Home-made traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int J Food Microbiol 88:241–245PubMedCrossRefGoogle Scholar
  68. Sanders ME (1998) Overview on functional foods: emphasis on probiotic bacteria. Int Dairy J 8:341–347CrossRefGoogle Scholar
  69. Schleifer KH, Kilpper-Balz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecalis comb. nov. Int J Syst Bacteriol 34:31–34CrossRefGoogle Scholar
  70. Schleifer KH, Kilpper-Balz R (1987) Molecular and chemo-taxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–19Google Scholar
  71. Stackebrandt E, Teuber M (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317–324PubMedCrossRefGoogle Scholar
  72. Thiercelin E (1899) Sur un diplocoque saprophyte de l’intestin susceptible à devenir pathogene. C R Séances Soc Biol Paris 51:269–271Google Scholar
  73. Thiercelin E, Jouhaud L (1903) Reproduction de l’entérocoque; taches centrales; granulations peripheriques et microblastes. C R Séances Soc Biol Paris 55:686–688Google Scholar
  74. Todorov SD, Wachsman M, Tome E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879PubMedCrossRefGoogle Scholar
  75. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative element pYI17. J Bacteriol 178:3585–3593PubMedGoogle Scholar
  76. Wessels D, Jooste PJ, Mostert JF (1988) Die voorkoms van Enterococcus spesies in melk en suiwelprodukte. S Afr Tydskr Suiwelk 20:68–72Google Scholar
  77. Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M (2003) Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746–5753PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2011

Authors and Affiliations

  • Adeel Javed
    • 1
  • Tariq Masud
    • 1
  • Qurat ul Ain
    • 1
  • Mohmmad Imran
    • 2
  • Shabana Maqsood
    • 3
  1. 1.Department of Food TechnologyUniversity of Arid AgricultureRawalpindiPakistan
  2. 2.Laboratory of Food MicrobiologyUniversite de CaenCAEN CedexFrance
  3. 3.Department of MicrobiologyQuaid e Azam UniversityIslamabadPakistan

Personalised recommendations