Annals of Microbiology

, Volume 61, Issue 2, pp 207–215 | Cite as

Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation

  • Yu Wang
  • Chuan-Chao DaiEmail author
Review Article


In natural ecosystems, endophytes, which live in the inner tissues of healthy plants, exhibit complex interactions with their hosts. During a long coevolutionary process with their hosts, endophytes have developed many significant and novel characteristics. In order to maintain a stable symbiosis, endophytes secrete varieties of extracellular enzymes that contribute to colonization and growth. All these specific enzymes, under certain conditions, could be exploited. Nowadays, more and more complex chemical reactions are being replaced by moderate and pollution-free enzymatic reactions. Bacteria have been widely used in bioengineering, but endophytes, as a kind of organism, have not been fully developed. Therefore, great efforts to develop endophyte resources could bring us a variety of benefits, such as novel and effective bioactive compounds that cannot be synthesized by chemical reactions. It is noteworthy that, after long-term coexistence with hosts, endophytes can synthesize biologically active substances similar to the secondary metabolites produced by host plants. This could help us to accumulate many valuable drug compounds such as paclitaxel and camptothecin in a short time period. In addition, endophytes are widespread in plant roots; they can deeply affect soil chemical composition, micro-ecosystems, and physical structure over their life cycle. Besides that, endophytes play an important role in the degradation of plant litter and organic pollutants, which have an active effect on the improvement of soil fertility. Endophytes are a most promising microbial resource, waiting to be exploited.


Endophytes Resource Biosynthesis Biotransformation Biodegradation 



The authors are grateful to the National Natural Science Foundation of China (NSFC, NO. 30970523, 30770073, 30500066) for its financial support. The authors express their great thanks to anonymous reviewers and editorial staff for their time and attention.


  1. Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569PubMedCrossRefGoogle Scholar
  2. Aken VB, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, an octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517PubMedCrossRefGoogle Scholar
  3. Aly AH, Edrada-Ebel R, Wray V, Muller WEG, Kozytaka S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725PubMedCrossRefGoogle Scholar
  4. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Coloaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefGoogle Scholar
  5. Barretti PB, de Souza RM, Pozza AAA, Pozza EA, de Carvalho JG, de Souza JT (2008) Increased nutritional efficiency of tomato plants inoculated with growth-promoting endophytic bacteria. Rev Bras Cienc Solo 32:1541–1548CrossRefGoogle Scholar
  6. Barros FAP, Rodrigues E (2005) Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem Syst Ecol 33:257–268CrossRefGoogle Scholar
  7. Bastos DZL, IdaC P, de Jesus DA, de Oliveira BH (2007) Biotransformation of betulinic and betulonic acids by fungi. Phytochemisty 68:834–839CrossRefGoogle Scholar
  8. Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu SQ, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503PubMedCrossRefGoogle Scholar
  9. Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharmaceut Biomed 46:945–952CrossRefGoogle Scholar
  10. Borges KB, Pupo MT, Bonato PS (2009a) Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi. Electrophoresis 30:3910–3917PubMedCrossRefGoogle Scholar
  11. Borges WS, Borges KB, Bonato PS, Said S, Pupo MT (2009b) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163CrossRefGoogle Scholar
  12. Brady SF, Clardy J (2000) CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. J Nat Prod 63:1447–1448PubMedCrossRefGoogle Scholar
  13. Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2009) Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20. Phytochemistry 70:121–127PubMedCrossRefGoogle Scholar
  14. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127CrossRefGoogle Scholar
  15. Costa LSR, Azevedo JL, Pereira JO, Carneiro ML, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615CrossRefGoogle Scholar
  16. Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:244–255CrossRefGoogle Scholar
  17. Debbab A, Aly AH, Edrada-Ebel R, Wray V, Muller WEG, Totzke F, Zirrgielei U, Schachtelt C, Kubbutat MHG, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72:626–631PubMedCrossRefGoogle Scholar
  18. Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945PubMedCrossRefGoogle Scholar
  19. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152PubMedCrossRefGoogle Scholar
  20. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724CrossRefGoogle Scholar
  21. Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755PubMedCrossRefGoogle Scholar
  22. Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T (2003) Stereoselective biotransformation of limonene and limonene oxide by cyanobacterium, Synechococcus sp. PCC 7942. J Biosci Bioeng 96:481–584CrossRefGoogle Scholar
  23. Jordaan A, Taylor JE, Rossenkhan R (2006) Occurrence and possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae) in Botswana. S Afr J Bot 72:245–255CrossRefGoogle Scholar
  24. Jurc D, Bojovic S, Jurc M (1999) Influence of endogenous terpenes on growth of three endophytic fungi from the needles of Pinus nigra Arnold. Phyton Ann Rei Bot 39:225–229Google Scholar
  25. Koide K, Osono T, Takeda H (2005) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286Google Scholar
  26. Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 51:773–776PubMedCrossRefGoogle Scholar
  27. Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7PubMedCrossRefGoogle Scholar
  28. Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16 S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359CrossRefGoogle Scholar
  29. Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770PubMedCrossRefGoogle Scholar
  30. Liu L, Liu SC, Chen XL, Guo LD, Che YS (2009) Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 17:606–613PubMedCrossRefGoogle Scholar
  31. Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112PubMedCrossRefGoogle Scholar
  32. Marco-Urrea E, Gabarrell X, Caminal G (2008) Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). J Chem Technol Biotechnol 83:1190–1196CrossRefGoogle Scholar
  33. Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54:685–696PubMedCrossRefGoogle Scholar
  34. Muller M, Valjakka R, Suooko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810PubMedCrossRefGoogle Scholar
  35. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8PubMedCrossRefGoogle Scholar
  36. Nikiforova SV, Pozdnyakova NN, Turkovskaya OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus Ostreatus D1. Curr Microbiol 58:554–558PubMedCrossRefGoogle Scholar
  37. Oses R, Valenzuela S, Freer J, Baeza J, Rodriguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135CrossRefGoogle Scholar
  38. Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23CrossRefGoogle Scholar
  39. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427PubMedCrossRefGoogle Scholar
  40. Pan JJ, Clay K (2004) Epichloe glyceriae infection affects carbon translocation in the clonal grass Glyceria striata. New Phytol 164:467–475CrossRefGoogle Scholar
  41. Peters S, Dammeyer B, Schulz B (1998) Endophyte-host interactions. I. Plant defense reactions to endophytic and pathogenic fungi. Symbiosis 25:193–211Google Scholar
  42. Phillips A, Germida J, Farrell R, Greer C (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064CrossRefGoogle Scholar
  43. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Rungjindamai N, Sakayaroj J (2006) Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J Nat Prod 69:856–858PubMedCrossRefGoogle Scholar
  44. Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401CrossRefGoogle Scholar
  45. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  46. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plant. Annu Rev Ecol Evol Syst 29:319–343CrossRefGoogle Scholar
  47. Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280PubMedCrossRefGoogle Scholar
  48. Saunders M, Kohn LM (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238PubMedCrossRefGoogle Scholar
  49. Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227Google Scholar
  50. Schulz B, Boyle C, Draeger S, Rommert AK, Kronh K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  51. Shi Y, Dai CC, Wu YC, Yuan ZL (2004) Study on the degradation of wheat straw by endophytic fungi. Acta Sci Circumst 24:145–149 (In Chinese)Google Scholar
  52. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  53. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefGoogle Scholar
  54. Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P, Chaichit N (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623PubMedCrossRefGoogle Scholar
  55. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  56. Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219Google Scholar
  57. Verza M, Arakawa NS, Lope NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis Sp. J Braz Chem Soc 20:195–200CrossRefGoogle Scholar
  58. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789PubMedCrossRefGoogle Scholar
  59. Wei GH, Yang XY, Zhang JW, Gao JM, Ma YQ, Fu YY, Wang P (2007) Rhizobialide: a new stearolactone produced by Mesorhizobium sp. CCNWGX022, a rhizobial endophyte from Glycyrrhiza uralensis. Chem Biodivers 4:893–898PubMedCrossRefGoogle Scholar
  60. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  61. Xiao X, Luo SL, Zeng GM, Wei WZ, Wan Y, Chen L, HJ G, Cao Z, Yang LX, Chen JL, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674PubMedCrossRefGoogle Scholar
  62. Xin G, Zhang GY, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soils 45:669–674CrossRefGoogle Scholar
  63. Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, Rahman K, Qin LP (2009) Comparative research of chemical constituents, antifungal and anttitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16:609–616PubMedCrossRefGoogle Scholar
  64. Yin H, Zhao Q, Sun FM, An T (2009) Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla. Phytomedicine 16:793–797PubMedCrossRefGoogle Scholar
  65. You F, Han T, Wu JZ, Huang BK, Qin LP (2009) Antifungal secondary metabolites from endophytic Verticillium sp. Biochem Syst Ecol 37:162–165CrossRefGoogle Scholar
  66. Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-Benzoxazolinone and 2-Hydroxy-1, 4-Benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 10:4863–4870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag and the University of Milan 2010

Authors and Affiliations

  1. 1.Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life ScienceNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations