Advertisement

Current Immunotherapy Approaches for Malignant Melanoma

  • Jaesung Lim
  • Eunjin Cho
  • Kyungwoo Lee
  • Yonghyun Choi
  • Youngmin Seo
  • Hojeong Jeon
  • Jonghoon ChoiEmail author
Review Article
  • 6 Downloads

Abstract

Melanoma is one of the skin cancers caused by various causes. Since the patients often do not feel pain that melanoma is mistaken for benign skin diseases. However, melanoma has the risk of multiplying rapidly and spreading easily through metastasis. It is important to treat it through chemo- or radiotherapy after surgical resection. Immunotherapy is a relatively new cancer treatment, which has shown longer survival rates than conventional cancer treatments in some cases. Cytokines or immune checkpoint blockers are the common immunotherapy strategies for melanoma. However, there are still melanoma patients who have not been benefited by immunotherapies. To overcome the limitations of current immunotherapy approaches, studies are underway to find new immunomodulators and various combinational immunotherapies. In this review, the existing treatments for melanoma are introduced and efforts to find optimal immunotherapy conditions for melanoma treatment have been summarized. Attempts to study the immunotherapy of melanoma with biochip technologies that simulate the body's microenvironment have also been summarized.

Keywords

Immunotherapy Cancer Melanoma Cytokine CTLA-4 PD-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rousseau, Suskind, R. R. Environment and the skin. Med. Clin. North Am. 74, 307–324 (1990).CrossRefGoogle Scholar
  2. 2.
    Rawlings, A. V. & Harding, C. R. Moisturization and skin barrier function. Dermatol. Ther. 17, 43–48 (2004).CrossRefGoogle Scholar
  3. 3.
    wBrenner, M. & Hearing, V. J. The protective role of melanin against UVdamage in human skin. Photochem. Photobiol. 84, 539–549 (2008).CrossRefGoogle Scholar
  4. 4.
    Montagna, W. & Carlisle, K. The architecture of black and white facial skin. J. Am. Acad. Dermatol. 24, 929–937 (1991).CrossRefGoogle Scholar
  5. 5.
    D'Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222–12248 (2013).CrossRefGoogle Scholar
  6. 6.
    Armstrong, B.K. & Kricker, A. The epidemiology of UVinduced skin cancer. J. Photochem. Photobiol., B 63, 8–18 (2001).CrossRefGoogle Scholar
  7. 7.
    Gloster, H.M. Jr. & Neal, K. Skin cancer in skin of color. J. Am. Acad. Dermatol. 55, 741–760; quiz 761–764 (2006).Google Scholar
  8. 8.
    Craythorne, E. & Al-Niami, F. Skin cancer. Medicine 45, 431–434 (2017).CrossRefGoogle Scholar
  9. 9.
    Urosevic, M. & Dummer, R. Immunotherapy for nonmelanoma skin cancer: does it have a future? Cancer 94, 477–485 (2002).CrossRefGoogle Scholar
  10. 10.
    Brash, D. E. et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. U. S. A. 88, 10124–10128 (1991).CrossRefGoogle Scholar
  11. 11.
    Reed, K. B. et al. Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin. Proc. 87, 328–334 (2012).CrossRefGoogle Scholar
  12. 12.
    Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 1136–1144 (2006).CrossRefGoogle Scholar
  13. 13.
    Gajendiran, M. et al. Conductive biomaterials for tissue engineering applications. J. Ind. Eng. Chem. (Amsterdam, Neth.) 51, 12–26 (2017).CrossRefGoogle Scholar
  14. 14.
    Yang, Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337 (2015).CrossRefGoogle Scholar
  15. 15.
    Hanci, D., Sahin, E., Muluk, N.B. & Cingi, C. Immunotherapy in all aspects. Arch. Oto-Rhino-Laryngol. 273, 1347–1355 (2016).CrossRefGoogle Scholar
  16. 16.
    Nakamura, K. & Okuyama, R. Immunotherapy for advanced melanoma: Current knowledge and future directions. J. Dermatol. Sci. 83, 87–94 (2016).CrossRefGoogle Scholar
  17. 17.
    Coit, D.G. et al. Melanoma. J. Natl. Compr. Cancer Network 10, 366–400 (2012).CrossRefGoogle Scholar
  18. 18.
    Sabel, M.S. & Sondak, V.K. Pros and cons of adjuvant interferon in the treatment of melanoma. Oncologist 8, 451–458 (2003).CrossRefGoogle Scholar
  19. 19.
    Nastala, C.L. et al. Recombinant IL-12 administration induces tumor regression in association with IFNgamma production. J. Immunol. 153, 1697–1706 (1994).Google Scholar
  20. 20.
    Gray, R.J., Pockaj, B.A. & Kirkwood, J.M. An update on adjuvant interferon for melanoma. Cancer Control 9, 16–21 (2002).CrossRefGoogle Scholar
  21. 21.
    Asadullah, K., Sterry, W. & Trefzer, U. Cytokines: interleukin and interferon therapy in dermatology. Clin. Exp. Dermatol. 27, 578–584 (2002).CrossRefGoogle Scholar
  22. 22.
    Jiang, T., Zhou, C. & Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 5, e1163462 (2016).CrossRefGoogle Scholar
  23. 23.
    Waldmann, T.A. Cytokines in Cancer Immunotherapy. Cold Spring Harbor Perspect. Biol. 10, a028472 (2018).CrossRefGoogle Scholar
  24. 24.
    McDermott, D. et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat. Rev. 40, 1056–1064 (2014).CrossRefGoogle Scholar
  25. 25.
    Yang, J.C. et al. The use of polyethylene glycolmodified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2. Cancer 76, 687–694 (1995).CrossRefGoogle Scholar
  26. 26.
    Gutterman, J.U. et al. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma& malignant lymphoma. Ann. Intern. Med. 93, 399–406 (1980).CrossRefGoogle Scholar
  27. 27.
    Indraccolo, S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity 43, 244–247 (2010).CrossRefGoogle Scholar
  28. 28.
    Gutterman, J.U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl. Acad. Sci. U. S. A. 91, 1198–1205 (1994).CrossRefGoogle Scholar
  29. 29.
    Pasquali, S. & Mocellin, S. The anticancer face of interferon alpha (IFN-alpha): from biology to clinical results, with a focus on melanoma. Curr. Med. Chem. 17, 3327–3336 (2010).CrossRefGoogle Scholar
  30. 30.
    Kee, D. & McArthur, G. Immunotherapy of melanoma. Eur. J. Surg. Oncol. 43, 594–603 (2017).CrossRefGoogle Scholar
  31. 31.
    Kim, S.H. & Chung, S.H. Comparison of High Dose Interferon-a2b Immunotherapy and Dacarbazine Chemotherapy as Postoperative Treatment of Malignant Melanoma. J. Korean Orthop. Assoc. 51, 426–431 (2016).CrossRefGoogle Scholar
  32. 32.
    Stadler, R. et al. Interferons in dermatology. J. Am. Acad. Dermatol. 20, 650–656 (1989).CrossRefGoogle Scholar
  33. 33.
    Dalmau, J. et al. Cutaneous necrosis after injection of polyethylene glycol-modified interferon alfa. J. Am. Acad. Dermatol. 53, 62–66 (2005).CrossRefGoogle Scholar
  34. 34.
    Kolenda, T. et al. Tumor microenvironment -Unknown niche with powerful therapeutic potential. Rep. Pract. Oncol. Radiother. 23, 143–153 (2018).CrossRefGoogle Scholar
  35. 35.
    Lu, C., Vickers, M.F. & Kerbel, R.S. Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc. Natl. Acad. Sci. U. S. A. 89, 9215–9219 (1992).CrossRefGoogle Scholar
  36. 36.
    Choi, D. et al. Nano-film coatings onto collagen hydrogels with desired drug release. J. Ind. Eng. Chem. (Amsterdam, Neth.) 36, 326–333 (2016).CrossRefGoogle Scholar
  37. 37.
    Dummer, W. et al. Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma. Melanoma Res. 5, 67–68 (1995).CrossRefGoogle Scholar
  38. 38.
    Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).CrossRefGoogle Scholar
  39. 39.
    Buchbinder, E.I. & Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).CrossRefGoogle Scholar
  40. 40.
    Buchbinder, E. & Hodi, F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest. 125, 3377–3383 (2015).CrossRefGoogle Scholar
  41. 41.
    Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).CrossRefGoogle Scholar
  42. 42.
    Hwang, J. et al. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles. Colloids Surf., B 142, 290–296 (2016).CrossRefGoogle Scholar
  43. 43.
    Postow, M.A. Managing immune checkpoint-blocking antibody side effects. Am. Soc. Clin. Oncol. Educ. Book, 76–83 (2015).Google Scholar
  44. 44.
    Hogan, S.A., Levesque, M.P. & Cheng, P.F. Melanoma Immunotherapy: Next-Generation Biomarkers. Front. Oncol. 8, 178 (2018).CrossRefGoogle Scholar
  45. 45.
    Gao, J. et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell 167, 397–404 (2016).CrossRefGoogle Scholar
  46. 46.
    Ho, M. & Kim, H. Glypican-3: a new target for cancer immunotherapy. Eur. J. Cancer 47, 333–338 (2011).CrossRefGoogle Scholar
  47. 47.
    Denoeud, J. & Moser, M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J. Leukoc Biol. 89, 195–203 (2011).CrossRefGoogle Scholar
  48. 48.
    Borst, J., Hendriks, J. & Xiao, Y. CD27 and CD70 in T cell and B cell activation. Curr. Opin. Immunol. 17, 275–281 (2005).CrossRefGoogle Scholar
  49. 49.
    Grant, E. J. et al. The role of CD27 in anti-viral T-cell immunity. Curr. Opin. Virol. 22, 77–88 (2017).CrossRefGoogle Scholar
  50. 50.
    DeBarros, A. et al. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. Eur. J. Immunol. 41, 195–201 (2011).CrossRefGoogle Scholar
  51. 51.
    Roberts, D. J. et al. Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J. Immunother. 33, 769–779 (2010).CrossRefGoogle Scholar
  52. 52.
    Willoughby, J., Griffiths, J., Tews, I. & Cragg, M.S. OX40: Structure and function -What questions remain? Mol. Immunol. 83, 13–22 (2017).CrossRefGoogle Scholar
  53. 53.
    Ishii, N., Takahashi, T., Soroosh, P. & Sugamura, K. OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv. Immunol. 105, 63–98 (2010).CrossRefGoogle Scholar
  54. 54.
    Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).CrossRefGoogle Scholar
  55. 55.
    Weinberg, A.D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).CrossRefGoogle Scholar
  56. 56.
    Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010).CrossRefGoogle Scholar
  57. 57.
    Das, M., Zhu, C. & Kuchroo, V.K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017).CrossRefGoogle Scholar
  58. 58.
    Du, W. et al. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Int. J. Mol. Sci. 18, (2017).Google Scholar
  59. 59.
    Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).CrossRefGoogle Scholar
  60. 60.
    Vaitaitis, G.M. & Wagner, Jr.D.H. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One 7, e38708 (2012).CrossRefGoogle Scholar
  61. 61.
    Heusschen, R., Griffioen, A.W. & Thijssen, V.L. Galectin-9 in tumor biology: a jack of multiple trades. Biochim. Biophys. Acta 1836, 177–185 (2013).Google Scholar
  62. 62.
    Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore antitumor immunity. J. Exp. Med. 207, 2187–2194 (2010).CrossRefGoogle Scholar
  63. 63.
    Li, K. et al. Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma. Oncotarget 7, 2496–2507 (2016).Google Scholar
  64. 64.
    Franklin, C. et al. Immunotherapy in melanoma: Recent advances and future directions. Eur. J. Surg. Oncol 43, 604–611 (2017).CrossRefGoogle Scholar
  65. 65.
    Melcher, A., Parato, K. Rooney, C.M. & Bell, J.C. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol. Ther. 19, 1008–1016 (2011).CrossRefGoogle Scholar
  66. 66.
    Puzanov, I. et al. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).CrossRefGoogle Scholar
  67. 67.
    Yokoda, R. et al. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother. 6, 39–49 (2017).CrossRefGoogle Scholar
  68. 68.
    Biselli, E. et al. Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Sci. Rep. 7, 12737 (2017).CrossRefGoogle Scholar
  69. 69.
    Sherman, H., Gitschier, H.J. & Rossi, A.E. A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity. Front. Immunol. 9, 857 (2018).CrossRefGoogle Scholar
  70. 70.
    Marrero, B., Messina, J.L. & Heller, R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cell. Dev. Biol.: Anim 45, 523–534 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer 2019

Authors and Affiliations

  • Jaesung Lim
    • 1
  • Eunjin Cho
    • 1
  • Kyungwoo Lee
    • 1
    • 2
  • Yonghyun Choi
    • 1
  • Youngmin Seo
    • 2
  • Hojeong Jeon
    • 2
  • Jonghoon Choi
    • 1
    Email author
  1. 1.School of Integrative EngineeringChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Center for BiomaterialsKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations