Advertisement

Functional Microparticle R&D for IVD and Cell Therapeutic Technology: Large-Scale Commercialized Products

  • Suk-Heung Song
  • Jin Hyuk Lee
  • Jinsik Yoon
  • Wook ParkEmail author
Review Article
  • 6 Downloads

Abstract

The global R&D of functional materials have become more prominent and are expected to increase with a high growth rate through 2022. High demand due to current and emerging applications, superior structural properties, and the development of advanced fabrication methods is accelerating and driving the functional materials market. The functional materials are segmented based on application into construction composites, medical technology, cosmetics & personal care, oil & gas, automotive, life science & technology, and other categories. In particular, the use of microparticles as functional materials is continually increasing in the field of medicine and the healthcare industry. Nanotechnology for diagnosis, monitoring, drug delivery, treatment and control of biological systems is the leading application in the microparticle market, causing the growing demand for new types of microparticles. Furthermore, growing medical and healthcare industries will increase the worldwide demand for new functional microparticles in biomedical technology applications. This review paper will discuss the main aspects of state-of-the-art functional microparticles research, while demonstrating the broad variety of applications in the fields of diagnostics and therapy, especially in large-scale commercialized products related to magnetic microparticles in IVD and to microcarriers in cell therapeutics.

Keywords

Functional Microparticles Microcarriers Magnetic Cell Culture IVD Therapeutics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microspheres Market by Type (Hollow, Solid), Raw Material (Glass, Ceramic, Fly Ash, Polymer, Metallic), Application (Construction Composites, Medical Technology, Cosmetics & Personal Care, Automotive, Oil & Gas) Global Forecast to 2022, Market Research Report (2017).Google Scholar
  2. 2.
    In-Vitro Diagnostics Market Trend, S&T Market Report 40 (2016).Google Scholar
  3. 3.
    Andra, W. and Nowak, H., Magnetism in Medicine, Wiley-VCH: New York (1998).Google Scholar
  4. 4.
    Callister, W. D., Materials Science and Engineering, Wiley: New York (2003).Google Scholar
  5. 5.
    O’Handley, R. C., Modern Magnetic Materials, Wiley: New York (2000).Google Scholar
  6. 6.
    Koch, C. C., Nanostructured Materials, Noyes Publications: New York (2002).Google Scholar
  7. 7.
    Tartaj, P., del Puerto Morales, M., Veintemillas-Verdaguer, S., González-Carreño, T., & Serna, C. J., The preparation of magnetic nanoparticles for applications in biomedicine. J. phys. D: Appl. Phys. 36, R182–R197 (2003).CrossRefGoogle Scholar
  8. 8.
    Plank C, Anton, M., Rudolph, C., Rosenecker, J., & Krötz, F., Enhancing and targeting nucleic acid delivery by magnetic force, Expert Opin. Biol. Ther. 3, 745–758 (2003).Google Scholar
  9. 9.
    Hafeli U, Schutt W, Teller J, and Zborowski M., Scientific and Clinical Applications of Magnetic Carriers, Plenum Press: New York (1997).CrossRefGoogle Scholar
  10. 10.
    Safarik, I. and Safarikova, M., Magnetic nanoparticles and biosciences, Monatshefte fur Chemie 133, 737–759 (2002).CrossRefGoogle Scholar
  11. 11.
    Berry, C. C. and Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36, R198–R206 (2003).CrossRefGoogle Scholar
  12. 12.
    Bahadur, D. and Giri, J., Biomaterials and magnetism, Sadhana 28, 639–56 (2003).CrossRefGoogle Scholar
  13. 13.
    Shinkai, M., Functional magnetic materials for medical applications. J. Biosci. Bioeng. 94, 606–613 (2002).CrossRefGoogle Scholar
  14. 14.
    Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36, R167–R181 (2003).CrossRefGoogle Scholar
  15. 15.
    Datta, S. C., and Opp, M. R., Lipopolysaccharideinduced increases in cytokines in discrete mouse brain regions are detectable using Luminex xMAP® technology, J. Neurosci. Methods 175, 119–124 (2008).CrossRefGoogle Scholar
  16. 16.
    Slovakova, M., Minc, N., Bilkova, Z., Smadja, C., Faigle, W., et al., Use of self assembled magnetic beads for on-chip protein digestion, Lab Chip 5, 935–942 (2005).CrossRefGoogle Scholar
  17. 17.
    Fan, Q., Guan, Y., Zhang, Z., Xu, G., Yang, Y., & Guo, C., A new method of synthesis well-dispersion and dense Fe3O4@ SiO2 magnetic nanoparticles for DNA extraction, Chem. Phys. Lett. 715, 7–13 (2018).CrossRefGoogle Scholar
  18. 18.
    Yi, D. K., Selvan, S. T., Lee, S. S., Papaefthymiou, G. C., Kundaliya, D., et al., Silica-coated nanocomposites of magnetic nanoparticles and quantum dots, JACS 127, 4990–4991 (2005).CrossRefGoogle Scholar
  19. 19.
    Lu, C. W., Hung, Y., Hsiao, J. K., Yao, M., Chung, T. H., Lin, Y. S., et al., Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett. 7, 149–154 (2007).CrossRefGoogle Scholar
  20. 20.
    van Hemert, P., Kilburn, D. G., van Wezel, A. L., Homogeneous cultivation of animal cells for the production of virus and virus products, Biotechnol. Bioeng. 11, 875–885 (1969).CrossRefGoogle Scholar
  21. 21.
    Giard, D. J., Thilly, W. G., Wang, D. I., Levine, D. W., Virus production with a newly developed microcarrier system, Appl. Environ. Microbiol. 34, 668–672 (1977).Google Scholar
  22. 22.
    Mered, B., Albrecht, P., Hopps, H. E., Cell growth optimization in microcarrier culture, In Vitro 16, 859–865 (1980).CrossRefGoogle Scholar
  23. 23.
    van Wezel, A. L., Growth of cell strains and primary cells on micro-carriers in homogeneous culture, Nature 216, 64–65 (1967).CrossRefGoogle Scholar
  24. 24.
    Grinnell, F., Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 53, 65–144 (1978).CrossRefGoogle Scholar
  25. 25.
    Lauri, A. and Truskey, G. A. A., Numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay, Biotechnol. Bioeng. 42, 963–973 (1993).CrossRefGoogle Scholar
  26. 26.
    Borysenko, J. Z. and Woods, W., Density, distribution and mobility of surface anions on a normal/ transformed cell pair, Exp. Cell Res. 118, 215–227 (1979).CrossRefGoogle Scholar
  27. 27.
    Horng, C. B. C., Primary culture of mammalian cells on microcarrier surface, Ph. D. Thesis, State University of New York, Buffalo, NY (1975).Google Scholar
  28. 28.
    Horng, C. B. and McLimans, W., Primary suspension culture of calf anterior pituitary cells on a microcarrier surface, Biotechnol. Bioeng. 17, 713–732 (1975).CrossRefGoogle Scholar
  29. 29.
    van Wezel, A. L., The large-scale cultivation of diploid cell strains in microcarrier culture. Improvement of microcarriers., Dev. Biol. Stand. 37, 143–147 (1976).Google Scholar
  30. 30.
    Levine, D. W., Wang, D. I. C., and Thilly, W. G., Optimization of growth surface parameters in microcarrier cell culture, Biotechnol. Bioeng. 21, 821–845 (1979).CrossRefGoogle Scholar
  31. 31.
    van Wezel, A. L., Microcarrier cultures of animal cells, in tissue culture: methods and applications, Academic Press, New York, 372–377 (1973).Google Scholar
  32. 32.
    Van Wezel, A. L. & Van der Velden de Groot, C. A. M., Large scale cultivation of animal cells in microcarrier culture, Process Biochem. 13, 6–8 (1978).Google Scholar
  33. 33.
    McLimans, W. F., Gailani, S., Horng, C. B., Perspectives of mass culture and the mammalian cell. Presented at the W. Alton Jones Cell Science Center Workshop, Lake Placid, New York (1976).Google Scholar
  34. 34.
    Levine, D. W., Wong, J. S., Wang, D. I. C., Thilly, W. G., Microcarrier cell culture: new methods for researchscale application, Somatic Cell Genet. 3, 149–155 (1977).CrossRefGoogle Scholar
  35. 35.
    CytodexTM 1: Beaded microcarriers for cell culture, Pharmacia Fine Chemicals, Technical Booklet Series, Uppsala, Sweden (1978).Google Scholar
  36. 36.
    Kuchler, R. J., Marlowe, M. L., Merchant, D. J., The mechanism of cell binding and cell-sheet formation in L strain fibroblasts, Exp. Cell Res. 20, 428–437 (1960).CrossRefGoogle Scholar
  37. 37.
    Inooka, S., The adsorption of suspended MH129F cells to DEAE-Sephadex particles, Tohoku J. Agric. Res. 20, 19–26 (1969).Google Scholar
  38. 38.
    Wandrey, C., Biselli, M., Schroder, B., & Schmoll, H. J., Culturing cells on macroporous glass carriers coated with gelatin, extracellular matrix protein and stromal cells, U.S. Patent No. 5,906,940. Washington, DC: U.S. Patent and Trademark Office (1999).Google Scholar
  39. 39.
    Wu, Q. F., Wu, C. T., Dong, B., & Wang, L. S., Cultivation of human mesenchymal stem cells on macroporous CultiSpher G microcarriers, Zhongguo Shi Yan Xue Ye Xue Za Zhi 11, 15–21 (2003).Google Scholar
  40. 40.
    Gang, D., Banerji, S. K., & Clevenger, T. E. (2000). Chromium (VI) removal by modified PVP-coated silica gel, Pract. Period. Hazard., Toxic, Radioact. Waste Manage. 4, 105–110 (2000).CrossRefGoogle Scholar
  41. 41.
    Graf, C., Vossen, D. L., Imhof, A., & van Blaaderen, A., A general method to coat colloidal particles with silica, Langmuir 19, 6693–700 (2003).CrossRefGoogle Scholar
  42. 42.
    Chu, G., Trobaugh, B., & Rao, P., High concentration homogenized collagen compositions, U.S. Patent No. 5,428,024. Washington, DC: U.S. Patent and Trademark Office (1995).Google Scholar
  43. 43.
    Berg, R. A., Silver, F. H., & Pachence, J. M., Collagen matrix beads for soft tissue repair, U.S. Patent No. 4,837,285. Washington, DC: U.S. Patent and Trademark Office (1989).Google Scholar
  44. 44.
    Ryu, J. H., Choi, C. Y., & Kim, B. S., Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres. The proceeding of KSBB 9 (2003).Google Scholar

Copyright information

© The Korean BioChip Society and Springer 2019

Authors and Affiliations

  • Suk-Heung Song
    • 1
  • Jin Hyuk Lee
    • 1
  • Jinsik Yoon
    • 1
  • Wook Park
    • 1
    Email author
  1. 1.Department of Electronic Engineering, Institute for Wearable Convergence ElectronicsKyung Hee UniversityYonginKorea

Personalised recommendations