Skip to main content
Log in

Microfluidic Fabrication of Encoded Hydrogel Microparticles for Application in Multiplex Immunoassay

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Recent interests in comprehensive protein surveys and protein biomarker studies have led to an increased demand for simultaneous measurement of multiple proteins in a single sample. Among various multiplex techniques, bead-based immunoassays, which use encoded particles attached with capture probes, have demonstrated distinct advantages of fluid-phase kinetics, high precision, and flexible target selection. In particular, encoded hydrogel particles composed of porous, hydrophilic, three-dimensional polymers have received positive attention because they enhance the binding kinetics of proteins, reduce protein denaturation, and increase the loading density of capture probes. Microfluidic techniques have been extensively used to fabricate the encoded hydrogel particles for multiplex immunoassays, enabling mass-production of highly monodisperse particles with complex morphologies in mild synthesis conditions. In this paper, we review microfluidic techniques available for the synthesis of encoded hydrogel particles and the important design parameters that determine the particles’ immunoassay performance. We also discuss currently reported multiplex immunoassay platforms that are based on encoded hydrogel particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table 1

Similar content being viewed by others

References

  1. Stern, E. et al. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138–142 (2010).

    CAS  PubMed  Google Scholar 

  2. Hellmich, W. et al. Single cell manipulation, analytics, and label–free protein detection in microfluidic devices for systems nanobiology. Electrophoresis 26, 3689–3696 (2005).

    CAS  PubMed  Google Scholar 

  3. Simone, N.L. et al. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan, T.L., Wulf, G., Burga, L. & Cantley, L.C. Cell-to-cell variability in PI3K protein level regulates PI3K-AKT pathway activity in cell populations. Curr. Biol. 21, 173–183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Michaluart, P. et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 59, 2347–2352 (1999).

    CAS  PubMed  Google Scholar 

  6. Benitz, W.E., Han, M.Y., Madan, A. & Ramachandra, P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 102, e41 (1998).

    CAS  PubMed  Google Scholar 

  7. Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 1, 213–225 (2004).

    PubMed  PubMed Central  Google Scholar 

  8. Beadle, C. et al. Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay. Lancet 343, 564–568 (1994).

    CAS  PubMed  Google Scholar 

  9. Kupiec, T. et al. Choice of an ELISA assay for screening postmortem blood for amphetamine and/or methamphetamine. J. Anal. Toxicol. 26, 513–518 (2002).

    CAS  PubMed  Google Scholar 

  10. Delattre, I.K. et al. Empirical models for dosage optimization of four ß-lactams in critically ill septic patients based on therapeutic drug monitoring of amikacin. Clin. Biochem. 43, 589–598 (2010).

    CAS  PubMed  Google Scholar 

  11. Lequin, R.M. Enzyme immunoassay (EIA)/enzymelinked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005).

    CAS  PubMed  Google Scholar 

  12. Schweitzer, B. & Kingsmore, S.F. Measuring proteins on microarrays. Curr. Opin. Biotechnol. 13, 14–19 (2002).

    CAS  PubMed  Google Scholar 

  13. Petricoin III, E.F. et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J. Clin. Oncol. 23, 3614–3621 (2005).

    Google Scholar 

  14. Lundberg, M. et al. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material. Mol. Cell. Proteomics, 10. M110.004978 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Chau, C.H., Rixe, O., McLeod, H. & Figg, W.D. Validation of analytic methods for biomarkers used in drug development. Clin. Cancer Res. 14, 5967–5976 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Chan, S.M. et al. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 10, 1390 (2004).

    CAS  PubMed  Google Scholar 

  17. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    CAS  PubMed  Google Scholar 

  18. Yoo, H.S., Lee, S.U., Park, K.Y. & Park, Y.H. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol. 35, 228–232 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang, S.T. et al. Identification of a biomarker panel using a multiplex proximity ligation assay improves accuracy of pancreatic cancer diagnosis. J. Transl. Med. 7, 105 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Burgos-Ramos, E., Martos-Moreno, G.Á., Argente, J. & Barrios, V. (2012) Multiplexed bead immunoassays: Advantages and limitations in pediatrics. 165–180 (Advances in Immunoassay Technology, InTech, Croatia, 2012)

    Google Scholar 

  21. Gitau, R. et al. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J. Clin. Endocrinol. Metab. 86, 104–109 (2001).

    CAS  PubMed  Google Scholar 

  22. Templin, M.F. et al. Protein microarray technology. Drug. Discov. Today. 7, 815–822 (2002).

    CAS  PubMed  Google Scholar 

  23. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    CAS  PubMed  Google Scholar 

  24. Jenison, R. et al. Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin. Chem. 47, 1894–1900 (2001).

    CAS  PubMed  Google Scholar 

  25. Rubina, A.Y. et al. Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques 34, 1008–1023 (2003).

    CAS  PubMed  Google Scholar 

  26. Elshal, M.F. & McCoy, J.P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38, 317–323 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Le Goff, G.C., Srinivas, R.L., Hill, W.A. & Doyle, P.S. Hydrogel microparticles for biosensing. Eur. Polym. J. 72, 386–412 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Zhao, X.-W. et al. Uniformly colorized beads for multiplex immunoassay. Chem. Mater. 18, 2443–2449 (2006).

    CAS  Google Scholar 

  29. Jun, B.-H. et al. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J. Comb. Chem. 9, 237–244 (2007).

    CAS  PubMed  Google Scholar 

  30. Zhao, Y. et al. Encoded porous beads for label–free multiplex detection of tumor markers. Adv. Mater. 21, 569–572 (2009).

    CAS  PubMed  Google Scholar 

  31. Kim, S.H., Shim, J.W. & Yang, S.M. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew. Chem. 50, 1171–1174 (2011).

    CAS  Google Scholar 

  32. Nallur, G. et al. Protein and nucleic acid detection by rolling circle amplification on gel-based microarrays. Biomed. Microdevices. 5, 115–123 (2003).

    CAS  Google Scholar 

  33. Moorthy, J., Burgess, R., Yethiraj, A. & Beebe, D. Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments. Anal. Chem. 79, 5322–5327 (2007).

    CAS  PubMed  Google Scholar 

  34. Kingsmore, S.F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5, 310 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumacheva, E. & Garstecki, P. Microfluidic reactors for polymer particles. (Wiley-WCH, Weinhem, Germany, 2011)

    Google Scholar 

  36. Dendukuri, D. & Doyle, P.S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).

    CAS  Google Scholar 

  37. Serra, C.A. & Chang, Z. Microfluidic–assisted synthesis of polymer particles. Chem. Eng. Technol. 31, 1099–1115 (2008).

    CAS  Google Scholar 

  38. Meiring, J.E. et al. Hydrogel biosensor array platform indexed by shape. Chem. Mater. 16, 5574–5580 (2004).

    CAS  Google Scholar 

  39. Pregibon, D.C., Toner, M. & Doyle, P.S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    CAS  PubMed  Google Scholar 

  40. Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13, 524 (2014).

    CAS  PubMed  Google Scholar 

  41. Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem.' Soc. 74, 317–321 (1997).

    CAS  Google Scholar 

  42. Zhang, H. et al. Exploring microfluidic routes to microgels of biological polymers. Macromol. Rapid Commun. 28, 527–538 (2007).

    CAS  Google Scholar 

  43. Xu, Q. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow–focusing device for controlled drug delivery. Small 5, 1575–1581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, J.T., Wang, J. & Han, J.J. Fabrication of advanced particles and particle–based materials assisted by droplet–based microfluidics. Small 7, 1728–1754 (2011).

    CAS  PubMed  Google Scholar 

  45. Seiffert, S. Microgel Capsules Tailored by Droplet–Based Microfluidics. ChemPhysChem. 14, 295–304 (2013).

    CAS  PubMed  Google Scholar 

  46. Thorsen, T., Roberts, R.W., Arnold, F.H. & Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163 (2001).

    CAS  PubMed  Google Scholar 

  47. Hu, J. et al. Photonic crystal hydrogel beads used for multiplex biomolecular detection. J. Mater. Chem. 19, 5730–5736 (2009).

    CAS  Google Scholar 

  48. Gerver, R.E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).

    CAS  PubMed  Google Scholar 

  49. Fu, T., Wu, Y., Ma, Y. & Li, H.Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem. Eng. Sci. 84, 207–217 (2012).

    CAS  Google Scholar 

  50. Liu, H. et al. Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay. J. Mater. Chem. B 4, 482–488 (2016).

    CAS  PubMed  Google Scholar 

  51. Ji, X.-H. et al. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab Chip 11, 2561–2568 (2011).

    CAS  PubMed  Google Scholar 

  52. Cramer, C., Fischer, P. & Windhab, E.J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59, 3045–3058 (2004).

    CAS  Google Scholar 

  53. Zhao, Y. et al. Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Mater. 4, e25 (2012).

    Google Scholar 

  54. Cheng, Y. et al. Anisotropic colloidal crystal particles from microfluidics. J. Colloid Interface Sci. 421, 64–70 (2014).

    CAS  PubMed  Google Scholar 

  55. Trilling, A.K., Beekwilder, J. & Zuilhof, H. Antibody orientation on biosensor surfaces: a minireview. Analyst 138, 1619–1627 (2013).

    CAS  PubMed  Google Scholar 

  56. Mu, Z. et al. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small 11, 6036–6043 (2015).

    CAS  PubMed  Google Scholar 

  57. Cederquist, K.B., Dean, S.L. & Keating, C.D. Encoded anisotropic particles for multiplexed bioanalysis. WIREs Nanomed. Nanobiotechnol. 2, 578–600 (2010).

    CAS  Google Scholar 

  58. Park, S., Lee, H.J. & Koh, W.-G. Multiplex immunoassay platforms based on shape-coded poly (ethylene glycol) hydrogel microparticles incorporating acrylic acid. Sensors 12, 8426–8436 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, S. et al. Controlling uniformity of photopolymerized microscopic hydrogels. Lab Chip 14, 1551–1563 (2014).

    CAS  PubMed  Google Scholar 

  60. Dendukuri, D. et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).

    CAS  PubMed  Google Scholar 

  61. Kim, J. et al. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips. Biomicrofluidics 11, 024120 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Lee, H., Roh, Y., Kim, H. & Bong, K. Low temperature flow lithography. Biomicrofluidics 12, 054105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, H.U. et al. Microfluidic Synthesis of pH–Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. Small 12, 3463–3470 (2016).

    CAS  PubMed  Google Scholar 

  64. Kim, H.U. et al. Fabrication of dual stimuli-responsive multicompartmental drug carriers for tumor-selective drug release. Lab Chip 18, 754–764 (2018).

    CAS  PubMed  Google Scholar 

  65. Roh, Y.H. et al. Microfluidic fabrication of biocompatible poly (N-vinylcaprolactam)-based microcarriers for modulated thermo-responsive drug release. Colloids Surf., B 172, 380–386 (2018).

    CAS  Google Scholar 

  66. Choi, N.W. et al. Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles. Anal. Chem. 84, 9370–9378 (2012).

    CAS  PubMed  Google Scholar 

  67. Lee, H., Shapiro, S.J., Chapin, S.C. & Doyle, P.S. Encoded hydrogel microparticles for sensitive and multiplex microRNA detection directly from raw cell lysates. Anal. Chem. 88, 3075–3081 (2016)

    CAS  PubMed  Google Scholar 

  68. Appleyard, D.C., Chapin, S.C. & Doyle, P.S. Multiplexed protein quantification with barcoded hydrogel microparticles. Anal. Chem. 83, 193–199 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Rolland, J.P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    CAS  PubMed  Google Scholar 

  70. Rolland, J.P. et al. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    CAS  PubMed  Google Scholar 

  71. Euliss, L.E., DuPont, J.A., Gratton, S. & DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35, 1095–1104 (2006).

    CAS  PubMed  Google Scholar 

  72. Xu, J. et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. 52, 6580–6589 (2013).

    CAS  Google Scholar 

  73. Kelly, J.Y. & De Simone, J.M. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc. 130, 5438–5439 (2008).

    CAS  PubMed  Google Scholar 

  74. Lewis, C.L. et al. Fabrication of uniform DNAconjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays. Anal. Chem. 82, 5851–5858 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, W., Choi, D., Kim, J.-H. & Koh, W.-G. Suspension arrays of hydrogel microparticles prepared by photopatterning for multiplexed protein-based bioassays. Biomed. Microdevices 10, 813–822 (2008).

    CAS  PubMed  Google Scholar 

  76. Jung, S. & Yi, H. Fabrication of chitosan-poly (ethylene glycol) hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules. Langmuir 28, 17061–17070 (2012).

    CAS  PubMed  Google Scholar 

  77. Kang, E. et al. Shape-Encoded Chitosan–Polyacrylamide Hybrid Hydrogel Microparticles with Controlled Macroporous Structures via Replica Molding for Programmable Biomacromolecular Conjugation. Langmuir 32, 5394–5402 (2016).

    CAS  PubMed  Google Scholar 

  78. Dendukuri, D. et al. Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007).

    CAS  PubMed  Google Scholar 

  79. Roh, Y.H. et al. Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease. Analyst 141, 4578–4586 (2016).

    CAS  PubMed  Google Scholar 

  80. Yeom, S.Y. et al. Multiplexed detection of epigenetic markers using quantum dot (QD)-encoded hydrogel microparticles. Anal. Chem. 88, 4259–4268 (2016).

    CAS  PubMed  Google Scholar 

  81. Lee, H. et al. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater. 9, 745 (2010).

    CAS  PubMed  Google Scholar 

  82. Pregibon, D.C. & Doyle, P.S. Optimization of encoded hydrogel particles for nucleic acid quantification. Anal. Chem. 81, 4873–4881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, H.J. et al. Multiplexed immunoassay using post-synthesis functionalized hydrogel microparticles. Lab Chip, (2019). DOI: 10.1039/c8lc01160e

    Google Scholar 

  84. Yang, B., Lu, Y. & Luo, G. Controllable preparation of polyacrylamide hydrogel microspheres in a coaxial microfluidic device. Ind. Eng. Chem. Res. 51, 9016–9022 (2012).

    CAS  Google Scholar 

  85. Ji, X.-H. et al. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. J. Mater. Chem. 21, 13380–13387 (2011).

    CAS  Google Scholar 

  86. Ye, B.-F. et al. Aptamer-based suspension array indexed by structural color and shape. J. Mater. Chem. 21, 18659–18664 (2011).

    CAS  Google Scholar 

  87. Langer, R. & Tirrell, D.A. Designing materials for biology and medicine. Nature 428, 487 (2004).

    CAS  PubMed  Google Scholar 

  88. Peppas, N.A., Keys, K.B., Torres-Lugo, M. & Lowman, A.M. Poly (ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62, 81–87 (1999).

    CAS  PubMed  Google Scholar 

  89. Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    CAS  Google Scholar 

  90. Park, S. et al. Entrapment of enzyme-linked magnetic nanoparticles within poly (ethylene glycol) hydrogel microparticles prepared by photopatterning. React. Funct. Polym. 69, 293–299 (2009).

    CAS  Google Scholar 

  91. Srinivas, R.L., Chapin, S.C. & Doyle, P.S. Aptamerfunctionalized microgel particles for protein detection. Anal. Chem. 83, 9138–9145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zubtsov, D. et al. Comparison of surface and hydrogel-based protein microchips. Anal. Biochem. 368, 205–213 (2007).

    CAS  PubMed  Google Scholar 

  93. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, R4 (2001).

    Google Scholar 

  94. MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 32, 526–532 (2002).

    CAS  PubMed  Google Scholar 

  95. Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    CAS  PubMed  Google Scholar 

  96. Strehlitz, B., Nikolaus, N. & Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 8, 4296–4307 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Löfblom, J. et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584, 2670–2680 (2010).

    PubMed  Google Scholar 

  98. Yang, Z.-X. et al. Handy, rapid and multiplex detection of tumor markers based on encoded silica–hydrogel hybrid beads array chip. Biosens. Bioelectron. 48, 153–157 (2013).

    CAS  Google Scholar 

  99. Xu, J. et al. Ultrasensitive low-background multiplex mycotoxin chemiluminescence immunoassay by silica-hydrogel photonic crystal microsphere suspension arrays in cereal samples. Sens. Actuators, B 232, 577–584 (2016).

    CAS  Google Scholar 

  100. Li, X., Liu, J. & Zhang, S. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem. Commun. 46, 595–597 (2010).

    CAS  Google Scholar 

  101. Xu, Y. et al. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens. Bioelectron. 87, 264–270 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering Research Center of Excellence Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A5A1010148) and the Next-Generation Biogreen 21 Program funded by Rural Development Administration of Korea (No. PJ013158). This research was also supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B070465 77 and NRF-2017R1D1A1B03029883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Wan Bong.

Additional information

These authors contributed equally to this work

Conflict of Interests

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, Y.H., Lee, H.J. & Bong, K.W. Microfluidic Fabrication of Encoded Hydrogel Microparticles for Application in Multiplex Immunoassay. BioChip J 13, 64–81 (2019). https://doi.org/10.1007/s13206-019-3104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3104-z

Keywords

Navigation