Microfluidic Fabrication of Encoded Hydrogel Microparticles for Application in Multiplex Immunoassay

  • Yoon Ho Roh
  • Hyun Jee Lee
  • Ki Wan BongEmail author
Review Article


Recent interests in comprehensive protein surveys and protein biomarker studies have led to an increased demand for simultaneous measurement of multiple proteins in a single sample. Among various multiplex techniques, bead-based immunoassays, which use encoded particles attached with capture probes, have demonstrated distinct advantages of fluid-phase kinetics, high precision, and flexible target selection. In particular, encoded hydrogel particles composed of porous, hydrophilic, three-dimensional polymers have received positive attention because they enhance the binding kinetics of proteins, reduce protein denaturation, and increase the loading density of capture probes. Microfluidic techniques have been extensively used to fabricate the encoded hydrogel particles for multiplex immunoassays, enabling mass-production of highly monodisperse particles with complex morphologies in mild synthesis conditions. In this paper, we review microfluidic techniques available for the synthesis of encoded hydrogel particles and the important design parameters that determine the particles’ immunoassay performance. We also discuss currently reported multiplex immunoassay platforms that are based on encoded hydrogel particles.


Multiplex immunoassay protein detection suspension array bead-based array hydrogel microparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stern, E. et al. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138–142 (2010).CrossRefPubMedGoogle Scholar
  2. 2.
    Hellmich, W. et al. Single cell manipulation, analytics, and label–free protein detection in microfluidic devices for systems nanobiology. Electrophoresis 26, 3689–3696 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    Simone, N.L. et al. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yuan, T.L., Wulf, G., Burga, L. & Cantley, L.C. Cell-to-cell variability in PI3K protein level regulates PI3K-AKT pathway activity in cell populations. Curr. Biol. 21, 173–183 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Michaluart, P. et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 59, 2347–2352 (1999).PubMedGoogle Scholar
  6. 6.
    Benitz, W.E., Han, M.Y., Madan, A. & Ramachandra, P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 102, e41 (1998).CrossRefPubMedGoogle Scholar
  7. 7.
    Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 1, 213–225 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Beadle, C. et al. Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay. Lancet 343, 564–568 (1994).CrossRefPubMedGoogle Scholar
  9. 9.
    Kupiec, T. et al. Choice of an ELISA assay for screening postmortem blood for amphetamine and/or methamphetamine. J. Anal. Toxicol. 26, 513–518 (2002).CrossRefPubMedGoogle Scholar
  10. 10.
    Delattre, I.K. et al. Empirical models for dosage optimization of four β-lactams in critically ill septic patients based on therapeutic drug monitoring of amikacin. Clin. Biochem. 43, 589–598 (2010).CrossRefPubMedGoogle Scholar
  11. 11.
    Lequin, R.M. Enzyme immunoassay (EIA)/enzymelinked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    Schweitzer, B. & Kingsmore, S.F. Measuring proteins on microarrays. Curr. Opin. Biotechnol. 13, 14–19 (2002).CrossRefPubMedGoogle Scholar
  13. 13.
    Petricoin III, E.F. et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J. Clin. Oncol. 23, 3614–3621 (2005).CrossRefGoogle Scholar
  14. 14.
    Lundberg, M. et al. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material. Mol. Cell. Proteomics, 10. M110.004978 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chau, C.H., Rixe, O., McLeod, H. & Figg, W.D. Validation of analytic methods for biomarkers used in drug development. Clin. Cancer Res. 14, 5967–5976 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chan, S.M. et al. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 10, 1390 (2004).CrossRefPubMedGoogle Scholar
  17. 17.
    Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).CrossRefGoogle Scholar
  18. 18.
    Yoo, H.S., Lee, S.U., Park, K.Y. & Park, Y.H. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol. 35, 228–232 (1997).PubMedPubMedCentralGoogle Scholar
  19. 19.
    Chang, S.T. et al. Identification of a biomarker panel using a multiplex proximity ligation assay improves accuracy of pancreatic cancer diagnosis. J. Transl. Med. 7, 105 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Burgos-Ramos, E., Martos-Moreno, G.Á., Argente, J. & Barrios, V. (2012) Multiplexed bead immunoassays: Advantages and limitations in pediatrics. 165–180 (Advances in Immunoassay Technology, InTech, Croatia, 2012)Google Scholar
  21. 21.
    Gitau, R. et al. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J. Clin. Endocrinol. Metab. 86, 104–109 (2001).PubMedGoogle Scholar
  22. 22.
    Templin, M.F. et al. Protein microarray technology. Drug. Discov. Today. 7, 815–822 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).CrossRefPubMedGoogle Scholar
  24. 24.
    Jenison, R. et al. Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin. Chem. 47, 1894–1900 (2001).PubMedGoogle Scholar
  25. 25.
    Rubina, A.Y. et al. Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques 34, 1008–1023 (2003).CrossRefPubMedGoogle Scholar
  26. 26.
    Elshal, M.F. & McCoy, J.P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38, 317–323 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Le Goff, G.C., Srinivas, R.L., Hill, W.A. & Doyle, P.S. Hydrogel microparticles for biosensing. Eur. Polym. J. 72, 386–412 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao, X.-W. et al. Uniformly colorized beads for multiplex immunoassay. Chem. Mater. 18, 2443–2449 (2006).CrossRefGoogle Scholar
  29. 29.
    Jun, B.-H. et al. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J. Comb. Chem. 9, 237–244 (2007).CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao, Y. et al. Encoded porous beads for label–free multiplex detection of tumor markers. Adv. Mater. 21, 569–572 (2009).CrossRefPubMedGoogle Scholar
  31. 31.
    Kim, S.H., Shim, J.W. & Yang, S.M. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew. Chem. 50, 1171–1174 (2011).CrossRefGoogle Scholar
  32. 32.
    Nallur, G. et al. Protein and nucleic acid detection by rolling circle amplification on gel-based microarrays. Biomed. Microdevices. 5, 115–123 (2003).CrossRefGoogle Scholar
  33. 33.
    Moorthy, J., Burgess, R., Yethiraj, A. & Beebe, D. Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments. Anal. Chem. 79, 5322–5327 (2007).CrossRefPubMedGoogle Scholar
  34. 34.
    Kingsmore, S.F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5, 310 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kumacheva, E. & Garstecki, P. Microfluidic reactors for polymer particles. (Wiley-WCH, Weinhem, Germany, 2011)CrossRefGoogle Scholar
  36. 36.
    Dendukuri, D. & Doyle, P.S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).CrossRefGoogle Scholar
  37. 37.
    Serra, C.A. & Chang, Z. Microfluidic–assisted synthesis of polymer particles. Chem. Eng. Technol. 31, 1099–1115 (2008).CrossRefGoogle Scholar
  38. 38.
    Meiring, J.E. et al. Hydrogel biosensor array platform indexed by shape. Chem. Mater. 16, 5574–5580 (2004).CrossRefGoogle Scholar
  39. 39.
    Pregibon, D.C., Toner, M. & Doyle, P.S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).CrossRefPubMedGoogle Scholar
  40. 40.
    Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13, 524 (2014).CrossRefPubMedGoogle Scholar
  41. 41.
    Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem.' Soc. 74, 317–321 (1997).CrossRefGoogle Scholar
  42. 42.
    Zhang, H. et al. Exploring microfluidic routes to microgels of biological polymers. Macromol. Rapid Commun. 28, 527–538 (2007).CrossRefGoogle Scholar
  43. 43.
    Xu, Q. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow–focusing device for controlled drug delivery. Small 5, 1575–1581 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang, J.T., Wang, J. & Han, J.J. Fabrication of advanced particles and particle–based materials assisted by droplet–based microfluidics. Small 7, 1728–1754 (2011).CrossRefPubMedGoogle Scholar
  45. 45.
    Seiffert, S. Microgel Capsules Tailored by Droplet–Based Microfluidics. ChemPhysChem. 14, 295–304 (2013).CrossRefPubMedGoogle Scholar
  46. 46.
    Thorsen, T., Roberts, R.W., Arnold, F.H. & Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163 (2001).CrossRefPubMedGoogle Scholar
  47. 47.
    Hu, J. et al. Photonic crystal hydrogel beads used for multiplex biomolecular detection. J. Mater. Chem. 19, 5730–5736 (2009).CrossRefGoogle Scholar
  48. 48.
    Gerver, R.E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).CrossRefPubMedGoogle Scholar
  49. 49.
    Fu, T., Wu, Y., Ma, Y. & Li, H.Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem. Eng. Sci. 84, 207–217 (2012).CrossRefGoogle Scholar
  50. 50.
    Liu, H. et al. Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay. J. Mater. Chem. B 4, 482–488 (2016).CrossRefGoogle Scholar
  51. 51.
    Ji, X.-H. et al. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab Chip 11, 2561–2568 (2011).CrossRefPubMedGoogle Scholar
  52. 52.
    Cramer, C., Fischer, P. & Windhab, E.J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59, 3045–3058 (2004).CrossRefGoogle Scholar
  53. 53.
    Zhao, Y. et al. Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Mater. 4, e25 (2012).CrossRefGoogle Scholar
  54. 54.
    Cheng, Y. et al. Anisotropic colloidal crystal particles from microfluidics. J. Colloid Interface Sci. 421, 64–70 (2014).CrossRefPubMedGoogle Scholar
  55. 55.
    Trilling, A.K., Beekwilder, J. & Zuilhof, H. Antibody orientation on biosensor surfaces: a minireview. Analyst 138, 1619–1627 (2013).CrossRefPubMedGoogle Scholar
  56. 56.
    Mu, Z. et al. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small 11, 6036–6043 (2015).CrossRefPubMedGoogle Scholar
  57. 57.
    Cederquist, K.B., Dean, S.L. & Keating, C.D. Encoded anisotropic particles for multiplexed bioanalysis. WIREs Nanomed. Nanobiotechnol. 2, 578–600 (2010).CrossRefGoogle Scholar
  58. 58.
    Park, S., Lee, H.J. & Koh, W.-G. Multiplex immunoassay platforms based on shape-coded poly (ethylene glycol) hydrogel microparticles incorporating acrylic acid. Sensors 12, 8426–8436 (2012).CrossRefPubMedGoogle Scholar
  59. 59.
    Park, S. et al. Controlling uniformity of photopolymerized microscopic hydrogels. Lab Chip 14, 1551–1563 (2014).CrossRefPubMedGoogle Scholar
  60. 60.
    Dendukuri, D. et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).CrossRefPubMedGoogle Scholar
  61. 61.
    Kim, J. et al. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips. Biomicrofluidics 11, 024120 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lee, H., Roh, Y., Kim, H. & Bong, K. Low temperature flow lithography. Biomicrofluidics 12, 054105 (2018).CrossRefPubMedGoogle Scholar
  63. 63.
    Kim, H.U. et al. Microfluidic Synthesis of pH–Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. Small 12, 3463–3470 (2016).CrossRefPubMedGoogle Scholar
  64. 64.
    Kim, H.U. et al. Fabrication of dual stimuli-responsive multicompartmental drug carriers for tumor-selective drug release. Lab Chip 18, 754–764 (2018).CrossRefPubMedGoogle Scholar
  65. 65.
    Roh, Y.H. et al. Microfluidic fabrication of biocompatible poly (N-vinylcaprolactam)-based microcarriers for modulated thermo-responsive drug release. Colloids Surf., B 172, 380–386 (2018).CrossRefGoogle Scholar
  66. 66.
    Choi, N.W. et al. Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles. Anal. Chem. 84, 9370–9378 (2012).CrossRefPubMedGoogle Scholar
  67. 67.
    Lee, H., Shapiro, S.J., Chapin, S.C. & Doyle, P.S. Encoded hydrogel microparticles for sensitive and multiplex microRNA detection directly from raw cell lysates. Anal. Chem. 88, 3075–3081 (2016)CrossRefPubMedGoogle Scholar
  68. 68.
    Appleyard, D.C., Chapin, S.C. & Doyle, P.S. Multiplexed protein quantification with barcoded hydrogel microparticles. Anal. Chem. 83, 193–199 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rolland, J.P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).CrossRefPubMedGoogle Scholar
  70. 70.
    Rolland, J.P. et al. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).CrossRefPubMedGoogle Scholar
  71. 71.
    Euliss, L.E., DuPont, J.A., Gratton, S. & DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35, 1095–1104 (2006).CrossRefPubMedGoogle Scholar
  72. 72.
    Xu, J. et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. 52, 6580–6589 (2013).CrossRefGoogle Scholar
  73. 73.
    Kelly, J.Y. & De Simone, J.M. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc. 130, 5438–5439 (2008).CrossRefPubMedGoogle Scholar
  74. 74.
    Lewis, C.L. et al. Fabrication of uniform DNAconjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays. Anal. Chem. 82, 5851–5858 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lee, W., Choi, D., Kim, J.-H. & Koh, W.-G. Suspension arrays of hydrogel microparticles prepared by photopatterning for multiplexed protein-based bioassays. Biomed. Microdevices 10, 813–822 (2008).CrossRefPubMedGoogle Scholar
  76. 76.
    Jung, S. & Yi, H. Fabrication of chitosan-poly (ethylene glycol) hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules. Langmuir 28, 17061–17070 (2012).CrossRefPubMedGoogle Scholar
  77. 77.
    Kang, E. et al. Shape-Encoded Chitosan–Polyacrylamide Hybrid Hydrogel Microparticles with Controlled Macroporous Structures via Replica Molding for Programmable Biomacromolecular Conjugation. Langmuir 32, 5394–5402 (2016).CrossRefPubMedGoogle Scholar
  78. 78.
    Dendukuri, D. et al. Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007).CrossRefPubMedGoogle Scholar
  79. 79.
    Roh, Y.H. et al. Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease. Analyst 141, 4578–4586 (2016).CrossRefPubMedGoogle Scholar
  80. 80.
    Yeom, S.Y. et al. Multiplexed detection of epigenetic markers using quantum dot (QD)-encoded hydrogel microparticles. Anal. Chem. 88, 4259–4268 (2016).CrossRefPubMedGoogle Scholar
  81. 81.
    Lee, H. et al. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater. 9, 745 (2010).CrossRefPubMedGoogle Scholar
  82. 82.
    Pregibon, D.C. & Doyle, P.S. Optimization of encoded hydrogel particles for nucleic acid quantification. Anal. Chem. 81, 4873–4881 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lee, H.J. et al. Multiplexed immunoassay using post-synthesis functionalized hydrogel microparticles. Lab Chip, (2019). DOI: 10.1039/c8lc01160eGoogle Scholar
  84. 84.
    Yang, B., Lu, Y. & Luo, G. Controllable preparation of polyacrylamide hydrogel microspheres in a coaxial microfluidic device. Ind. Eng. Chem. Res. 51, 9016–9022 (2012).CrossRefGoogle Scholar
  85. 85.
    Ji, X.-H. et al. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. J. Mater. Chem. 21, 13380–13387 (2011).CrossRefGoogle Scholar
  86. 86.
    Ye, B.-F. et al. Aptamer-based suspension array indexed by structural color and shape. J. Mater. Chem. 21, 18659–18664 (2011).CrossRefGoogle Scholar
  87. 87.
    Langer, R. & Tirrell, D.A. Designing materials for biology and medicine. Nature 428, 487 (2004).CrossRefPubMedGoogle Scholar
  88. 88.
    Peppas, N.A., Keys, K.B., Torres-Lugo, M. & Lowman, A.M. Poly (ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62, 81–87 (1999).CrossRefPubMedGoogle Scholar
  89. 89.
    Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).CrossRefGoogle Scholar
  90. 90.
    Park, S. et al. Entrapment of enzyme-linked magnetic nanoparticles within poly (ethylene glycol) hydrogel microparticles prepared by photopatterning. React. Funct. Polym. 69, 293–299 (2009).CrossRefGoogle Scholar
  91. 91.
    Srinivas, R.L., Chapin, S.C. & Doyle, P.S. Aptamerfunctionalized microgel particles for protein detection. Anal. Chem. 83, 9138–9145 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zubtsov, D. et al. Comparison of surface and hydrogel-based protein microchips. Anal. Biochem. 368, 205–213 (2007).CrossRefPubMedGoogle Scholar
  93. 93.
    Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, R4 (2001).CrossRefGoogle Scholar
  94. 94.
    MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 32, 526–532 (2002).CrossRefPubMedGoogle Scholar
  95. 95.
    Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).CrossRefPubMedGoogle Scholar
  96. 96.
    Strehlitz, B., Nikolaus, N. & Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 8, 4296–4307 (2008).CrossRefPubMedGoogle Scholar
  97. 97.
    Löfblom, J. et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584, 2670–2680 (2010).CrossRefPubMedGoogle Scholar
  98. 98.
    Yang, Z.-X. et al. Handy, rapid and multiplex detection of tumor markers based on encoded silica–hydrogel hybrid beads array chip. Biosens. Bioelectron. 48, 153–157 (2013).CrossRefGoogle Scholar
  99. 99.
    Xu, J. et al. Ultrasensitive low-background multiplex mycotoxin chemiluminescence immunoassay by silica-hydrogel photonic crystal microsphere suspension arrays in cereal samples. Sens. Actuators, B 232, 577–584 (2016).CrossRefGoogle Scholar
  100. 100.
    Li, X., Liu, J. & Zhang, S. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem. Commun. 46, 595–597 (2010).CrossRefGoogle Scholar
  101. 101.
    Xu, Y. et al. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens. Bioelectron. 87, 264–270 (2017).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations