In Vitro Reconstruction of Brain Tumor Microenvironment

  • Ilkyoo Koh
  • Pilnam KimEmail author
Review Article


The cancer cells in brain tumors interact with their microenvironment, which includes stromal cells, the extracellular matrix (ECM), and the physical properties of tissues. The reciprocal interaction between cancer cells and the surrounding microenvironment regulates the biological behavior of cancer cells. To improve our understanding of the progression of brain tumors, it is useful to construct physiologically relevant brain tumor models. Consequently, versatile in vitro tumor models ranging from simplistic two-dimensional (2D) cultures to three-dimensional (3D) cultures have been developed to mimic the microenvironments of the brain. This review covers the recent progress in the in vitro reconstruction of brain tumor microenvironments.


Brain tumor Microenvironment In vitro model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Preusser, M. & Marosi, C. Neuro-oncology in 2016: Advances in brain tumour classification and therapy. Nat. Rev. Neurol. 13, 71–72 (2017).CrossRefGoogle Scholar
  2. 2.
    Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016).CrossRefGoogle Scholar
  3. 3.
    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).CrossRefGoogle Scholar
  4. 4.
    Bredel, M. Anticancer drug resistance in primary human brain tumors. Brain Res. Rev. 35, 161–204 (2001).CrossRefGoogle Scholar
  5. 5.
    Yip, S. et al. MSH6 Mutations Arise in Glioblastomas during Temozolomide Therapy and Mediate Temozolomide Resistance. Clin. Cancer Res. 15, 4622–4629 (2009).Google Scholar
  6. 6.
    Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Sciences (N. Y.) 348 (2015).Google Scholar
  7. 7.
    Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).CrossRefGoogle Scholar
  8. 8.
    Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).CrossRefGoogle Scholar
  9. 9.
    Ruoslahti, E. Brain extracellular matrix. Glycobiology 6, 489–492 (1996).CrossRefGoogle Scholar
  10. 10.
    Wiranowska, M. & Rojiani, M. V. in Glioma–Exploring Its Biology and Practical Relevance Glioma–Exploring Its Biology and Practical Relevance (ed Anirban Ghosh) Ch. 12, (InTech, 2009).Google Scholar
  11. 11.
    Ulrich, T. A., de Juan Pardo, E. M. & Kumar, S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167–4174 (2009).CrossRefGoogle Scholar
  12. 12.
    Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C. & Van Meir, E. G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069 (2004).CrossRefGoogle Scholar
  13. 13.
    Quail, D. F. & Joyce, J. A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 31, 326–341 (2017).CrossRefGoogle Scholar
  14. 14.
    Hickman, J. A. et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnol. J. 9, 1115–1128 (2014).CrossRefGoogle Scholar
  15. 15.
    Rich, J. N. & Bigner, D. D. Development of novel targeted therapies in the treatment of malignant glioma. Nat. Rev. Drug Discovery 3, 430–446 (2004).CrossRefGoogle Scholar
  16. 16.
    Zamecnik, J. The extracellular space and matrix of gliomas. Acta Neuropathol. 110, 435–442 (2005).CrossRefGoogle Scholar
  17. 17.
    Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat. Commun. 6 (2015).Google Scholar
  18. 18.
    Kim, Y. & Kumar, S. CD44-Mediated Adhesion to Hyaluronic Acid Contributes to Mechanosensing and Invasive Motility. Mol. Cancer. Res. 12, 1416–1429, doi:10.1158/1541–7786.Mcr–13–0629 (2014).Google Scholar
  19. 19.
    Ananthanarayanan, B., Kim, Y. & Kumar, S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923 (2011).CrossRefGoogle Scholar
  20. 20.
    Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. U. S. A. 109, 10334–10339 (2012).CrossRefGoogle Scholar
  21. 21.
    Thomas, T. W. & DiMilla, P. A. Spreading and motility of human glioblastoma cells on sheets of silicone rubber depend on substratum compliance. Med. Biol. Eng. Comput. 38, 360–370 (2000).CrossRefGoogle Scholar
  22. 22.
    Grundy, T. J. et al. Differential response of patientderived primary glioblastoma cells to environmental stiffness. Sci. Rep. 6 (2016).Google Scholar
  23. 23.
    Payan, Y. & Ohayon, J. Biomechanics of living organs: hyperelastic constitutive laws for finite element modeling. pp. 127–146 (Academic Press, an imprint of Elsevier, 2017).Google Scholar
  24. 24.
    Giese, A. & Westphal, M. Glioma invasion in the central nervous system. Neurosurgery 39, 235–250 (1996).CrossRefGoogle Scholar
  25. 25.
    Holland, E. C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. U. S. A. 97, 6242–6244 (2000).CrossRefGoogle Scholar
  26. 26.
    Giese, A. et al. Migration of human glioma cells on myelin. Neurosurgery 38, 755–764 (1996).CrossRefGoogle Scholar
  27. 27.
    Cha, J. et al. Tapered Microtract Array Platform for Antimigratory Drug Screening of Human Glioblastoma Multiforme. Adv. Healthcare Mater. 4 (2015).Google Scholar
  28. 28.
    Johnson, J. et al. Quantitative Analysis of Complex Glioma Cell Migration on Electrospun Polycaprolactone Using Time-Lapse Microscopy. Tissue Eng., Part C Methods. 15, 531–540 (2009).CrossRefGoogle Scholar
  29. 29.
    Beliveau, A., Thomas, G., Gong, J. X., Wen, Q. & Jain, A. Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells. Sci. Rep. 6 (2016).Google Scholar
  30. 30.
    Rao, S. S. et al. Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials 34, 5181–5190 (2013).CrossRefGoogle Scholar
  31. 31.
    Baker, B. M. & Chen, C. S. Deconstructing the third dimension -how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).CrossRefGoogle Scholar
  32. 32.
    Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Controlled Release 164, 192–204 (2012).CrossRefGoogle Scholar
  33. 33.
    Kim, J. B. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15, 365–377 (2005).CrossRefGoogle Scholar
  34. 34.
    Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).CrossRefGoogle Scholar
  35. 35.
    Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007).CrossRefGoogle Scholar
  36. 36.
    Inch, W. R. Growth of Nodular Carcinomas in Rodents Compared with Multi-Cell Spheroids in Tissue Culture. Growth 34, 271–& (1970).Google Scholar
  37. 37.
    Sutherland, R. M., Inch, W. R., Mccredie, J. A. & Kruuv, J. A multi-component radiation survival curve using an in-vitro tumour model. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 18, 491–495 (1970).CrossRefGoogle Scholar
  38. 38.
    Khaitan, D., Chandna, S., Arya, M. B. & Dwarakanath, B. S. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J. Transl. Med. 4, 12 (2006).CrossRefGoogle Scholar
  39. 39.
    Lin, R. Z. & Chang, H. Y. Recent advances in threedimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008).CrossRefGoogle Scholar
  40. 40.
    Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10 (2012).Google Scholar
  41. 41.
    Tung, Y. C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011).CrossRefGoogle Scholar
  42. 42.
    Del Duca, D., Werbowetski, T. & Del Maestro, R. F. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J. Neuro-Oncol. 67, 295–303 (2004).CrossRefGoogle Scholar
  43. 43.
    Wong, S. F. et al. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 32, 8087–8096 (2011).CrossRefGoogle Scholar
  44. 44.
    Fan, Y. T., Nguyen, D. T., Akay, Y., Xu, F. & Akay, M. Engineering a Brain Cancer Chip for High-throughput Drug Screening. Sci. Rep. 6 (2016).Google Scholar
  45. 45.
    Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).CrossRefGoogle Scholar
  46. 46.
    Hamer, P. C. D. W. et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27, 2091–2096 (2008).CrossRefGoogle Scholar
  47. 47.
    Koochekpour, S., Pilkington, G. J. & Merzak, A. Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int. J. Cancer 63, 450–454 (1995).CrossRefGoogle Scholar
  48. 48.
    Wiranowska, M., Tresser, N. & Saporta, S. The effect of interferon and anti-CD44 antibody on mouse glioma invasiveness in vitro. Anticancer Res. 18, 3331–3338 (1998).Google Scholar
  49. 49.
    Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 4, 165–178 (2011).CrossRefGoogle Scholar
  50. 50.
    Zustiak, S. P. et al. Three-Dimensional Matrix Stiffness and Adhesive Ligands Affect Cancer Cell Response to Toxins. Biotechnol. Bioeng. 113, 443–452 (2016).CrossRefGoogle Scholar
  51. 51.
    Kievit, F. M. et al. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31, 5903–5910 (2010).CrossRefGoogle Scholar
  52. 52.
    Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L. & Kumar, S. Probing cellular mechanobiology in threedimensional culture with collagen-agarose matrices. Biomaterials 31, 1875–1884 (2010).CrossRefGoogle Scholar
  53. 53.
    Wang, C., Tong, X. & Yang, F. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEGbased hydrogels. Mol. Pharmaceutics 11, 2115–2125 (2014).CrossRefGoogle Scholar
  54. 54.
    Wang, C., Tong, X., Jiang, X. & Yang, F. Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels. J. Biomed. Mater. Res., Part A 105, 770–778 (2017).CrossRefGoogle Scholar
  55. 55.
    Pedron, S. & Harley, B. A. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res., Part A 101, 3404–3415 (2013).CrossRefGoogle Scholar
  56. 56.
    Heffernan, J. M., Overstreet, D. J., Le, L. D., Vernon, B. L. & Sirianni, R. W. Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion. Ann. Biomed. Eng. 43, 1965–1977 (2015).CrossRefGoogle Scholar
  57. 57.
    Pedron, S., Becka, E. & Harley, B. A. Spatially Gradated Hydrogel Platform as a 3D Engineered Tumor Microenvironment. Adv. Mater. 27, 1567–+ (2015).CrossRefGoogle Scholar
  58. 58.
    Rao, S. S. et al. Glioblastoma Behaviors in Three-Dimensional Collagen-Hyaluronan Composite Hydrogels. ACS Appl. Mater. Interfaces 5, 9276–9284 (2013).CrossRefGoogle Scholar
  59. 59.
    Cha, J., Kang, S. G. & Kim, P. Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation. Sci. Rep. 6, 24912 (2016).CrossRefGoogle Scholar
  60. 60.
    Pedron, S., Becka, E. & Harley, B. A. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 34, 7408–7417 (2013).CrossRefGoogle Scholar
  61. 61.
    Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006).Google Scholar
  62. 62.
    Crapo, P. M. et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33, 3539–3547 (2012).CrossRefGoogle Scholar
  63. 63.
    DeQuach, J. A., Yuan, S. H., Goldstein, L. S. & Christman, K. L. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng., Part A 17, 2583–2592, (2011).CrossRefGoogle Scholar
  64. 64.
    Koh, I. et al. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Sci. Rep. 8 (2018).Google Scholar

Copyright information

© The Korean BioChip Society and Springer 2019

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations