BioChip Journal

, Volume 12, Issue 4, pp 257–267 | Cite as

Inertial Microfluidics-Based Cell Sorting

  • Ga-Yeong Kim
  • Jong-In Han
  • Je-Kyun ParkEmail author
Review Article


Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.


Cell sorting Dean flow Inertial microfluidics Inertial migration Spiral channel Straight channel 


  1. 1.
    Yu, Z.T.F., Yong, K.M.A. & Fu, J. Microfluidic blood cell sorting: now and beyond. Small 10, 1687–1703 (2014).CrossRefGoogle Scholar
  2. 2.
    Wyatt Shields IV, C., Reyes, C. & López, G.P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230–1249 (2015).CrossRefGoogle Scholar
  3. 3.
    Antfolk, M. & Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood-a review. Anal. Chim. Acta 965, 9–35 (2017).CrossRefGoogle Scholar
  4. 4.
    Wu, J., Chen, Q. & Lin, J.-M. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421–441 (2017).CrossRefGoogle Scholar
  5. 5.
    Mao, X., Lin, S.-C.S., Dong, C. & Huang, T.J. Singlelayer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583–1589 (2009).CrossRefGoogle Scholar
  6. 6.
    Lin, S.-C., Yen, P.-W., Peng, C.-C. & Tung, Y.-C. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip 12, 3135–3141 (2012).CrossRefGoogle Scholar
  7. 7.
    Mach, A.J., Adeyiga, O.B. & Di Carlo, D. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13, 1011–1026 (2013).CrossRefGoogle Scholar
  8. 8.
    Li, X., Chen, W., Liu, G., Lu, W. & Fu, J. Continuousflow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14, 2565–2575 (2014).CrossRefGoogle Scholar
  9. 9.
    Tripathi, S., Kumar, Y.V.B., Agrawal, A., Prabhakar, A. & Joshi, S.S. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016).CrossRefGoogle Scholar
  10. 10.
    Myung, J.H. & Hong, S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip 15, 4500–4511 (2015).CrossRefGoogle Scholar
  11. 11.
    Yeo, T. et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016).CrossRefGoogle Scholar
  12. 12.
    Doh, I. & Cho, Y.-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators A Phys. 121, 59–65 (2005). https://doi. org/10.1016/j.sna.2005.01.030CrossRefGoogle Scholar
  13. 13.
    Çetin, B. & Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410–2427 (2011).CrossRefGoogle Scholar
  14. 14.
    Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644–1659 (2007).CrossRefGoogle Scholar
  15. 15.
    Robert, D. et al. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902–1910 (2011).CrossRefGoogle Scholar
  16. 16.
    Shen, F., Hwang, H., Hahn, Y.K. & Park, J.-K. Labelfree cell separation using a tunable magnetophoretic repulsion force. Anal. Chem. 84, 3075–3081 (2012).CrossRefGoogle Scholar
  17. 17.
    Shi, J., Huang, H., Stratton, Z, Huang, Y. & Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).CrossRefGoogle Scholar
  18. 18.
    Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A. 112, 4970–4975 (2015).CrossRefGoogle Scholar
  19. 19.
    Urbansky, A. et al. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7, 17161 (2017).CrossRefGoogle Scholar
  20. 20.
    Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656–3662 (2011).CrossRefGoogle Scholar
  21. 21.
    Landenberger, B., Höfemann, H., Wadle, S. & Rohrbach, A. Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab Chip 12, 3177–3183 (2012).CrossRefGoogle Scholar
  22. 22.
    Yamada, M., Nakashima, M. & Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76, 5465–5471 (2004).CrossRefGoogle Scholar
  23. 23.
    Ashley, J.F., Bowman, C.N. & Davis, R.H. Hydrodynamic separation of particles using pinched-flow fractionation. AIChE J. 59, 3444–3457 (2013). https://doi. org/10.1002/aic.14087CrossRefGoogle Scholar
  24. 24.
    Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).CrossRefGoogle Scholar
  25. 25.
    McGrath, J., Jimenez, M. & Bridle, H. Deterministic lateral displacement for particle separation: a review. Lab Chip 14, 4139–4158 (2014).CrossRefGoogle Scholar
  26. 26.
    Tran, T.S.H., Ho, B.D., Beech, J.P. & Tegenfeldt, J.O. Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17, 3592–3600 (2017).CrossRefGoogle Scholar
  27. 27.
    Choi, S. & Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7, 890–897 (2007).CrossRefGoogle Scholar
  28. 28.
    Choi, S., Song, S., Choi, C. & Park, J.-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem. 81, 50–55 (2009).CrossRefGoogle Scholar
  29. 29.
    Kim, B., Lee, J.K. & Choi, S. Continuous sorting and washing of cancer cells from blood cells by hydrophoresis. BioChip J. 10, 81–87 (2016). https://doi. org/10.1007/s13206-016-0201-0CrossRefGoogle Scholar
  30. 30.
    Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038–3046 (2009).CrossRefGoogle Scholar
  31. 31.
    Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10–34 (2016).CrossRefGoogle Scholar
  32. 32.
    Godino, N., Jorde, F., Lawlor, D., Jaeger, M. & Duschl, C. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device. J. Micromech. Microeng. 25, 084002 (2015). Scholar
  33. 33.
    Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).CrossRefGoogle Scholar
  34. 34.
    Bhagat, A.A.S., Kuntaegowdanahalli, S.S. & Papautsky, I. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20, 101702 (2008). Scholar
  35. 35.
    Amini, H., Lee, W. & Di Carlo, D. Inertial microfluidic physics. Lab Chip 14, 2739–2761 (2014).CrossRefGoogle Scholar
  36. 36.
    Lee, M.G., Choi, S. & Park, J.-K. Inertial separation in a contractio-expansion array microchannel. J. Chromatogr. A 1218, 4138–4143 (2011).CrossRefGoogle Scholar
  37. 37.
    Choi, K. et al. Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood. Anal. Chem. 90, 4657–4662 (2018).CrossRefGoogle Scholar
  38. 38.
    Park, J.-S. & Jung, H.-I. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal. Chem. 81, 8280–8288 (2009).CrossRefGoogle Scholar
  39. 39.
    Segré, G. & Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209–210 (1961). Scholar
  40. 40.
    Segré, G. & Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136–157 (1962). Scholar
  41. 41.
    Mach. A.J. & Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107, 302–311 (2010).CrossRefGoogle Scholar
  42. 42.
    Li, M., van Zee, M., Goda, K. & Di Carlo, D. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab Chip 18, 2575–2582 (2018).CrossRefGoogle Scholar
  43. 43.
    Zhou, J., Giridhar, P.V., Kasper, S. & Papautsky, I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13, 1919–1929 (2013).CrossRefGoogle Scholar
  44. 44.
    Tan, A.P. et al. Continuous-flow cytomorphological staining and analysis. Lab Chip 14, 522–531 (2014).CrossRefGoogle Scholar
  45. 45.
    Dudani, J.S., Go, D.E., Gossett, D.R., Tan, A.P. & Di Carlo, D. Mediating millisecond reaction time around particles and cells. Anal. Chem. 86, 1502–1510 (2014).CrossRefGoogle Scholar
  46. 46.
    Dudani, J.S. et al. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9, 014112 (2015).CrossRefGoogle Scholar
  47. 47.
    Shen, S. et al. Regulating secondary flow in ultra-low aspect ratio microchannels by dimensional confinement. Adv. Theory Simul. 1, 1700034 (2018). Scholar
  48. 48.
    Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Kaval, N., Seliskar, C.J. & Papautsky, I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187–195 (2010).CrossRefGoogle Scholar
  49. 49.
    Lee, M.G. et al. Inertial blood plasma separation in a contraction-expansion array microchannel. Appl. Phys. Lett. 98, 253702 (2011). Scholar
  50. 50.
    Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.-K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress, Anal. Chem. 85, 6213–6218 (2013).Google Scholar
  51. 51.
    Lee, M.G., Shin, J.H., Choi, S. & Park, J.-K. Enhanced blood plasma separation by modulation of inertial lift force. Sens. Actuators B Chem. 190, 311–317 (2014). Scholar
  52. 52.
    Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973–2980 (2009).CrossRefGoogle Scholar
  53. 53.
    Zhang, J., Li, W. & Alici, G. Inertial microfluidics: mechanisms and applications. In D. Zhang & B. Wei (Eds.), Advanced Mechatronics and MEMS Devices II, 563–593 (2017).CrossRefGoogle Scholar
  54. 54.
    Hou, H.W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013).CrossRefGoogle Scholar
  55. 55.
    Warkiani, M.E. et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128–137 (2014).CrossRefGoogle Scholar
  56. 56.
    Lee, W. et al. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5, 7717 (2015).CrossRefGoogle Scholar
  57. 57.
    Choi, J., Hong, S.C., Kim, W. & Jung, J.H. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sensors 2, 513–521 (2017).CrossRefGoogle Scholar
  58. 58.
    Kim, J. et al. Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal. Chem. 90, 1827–1835 (2018).CrossRefGoogle Scholar
  59. 59.
    Xu, W., Hou, Z., Liu, Z. & Wu, Z. Viscosity-differenceinduced asymmetric selective focusing for large stroke particle separation. Microfluid. Nanofluid. 20, 128 (2016).CrossRefGoogle Scholar
  60. 60.
    Lee, D. et al. Active control of inertial focusing positions and particle separations enabled by velocity profile tuning with coflow systems. Anal. Chem. 90, 2902–2911 (2018).CrossRefGoogle Scholar
  61. 61.
    Wang, L. & Dandy, D.S. High-throughput inertial focusing of micrometer-and sub-micrometer-sized particles separation. Adv. Sci. 4, 1700153 (2017).CrossRefGoogle Scholar
  62. 62.
    Cruz, J. et al. High pressure inertial focusing for separating and concentrating bacteria at high throughput. J. Micromech. Microeng. 27, 084001 (2017).CrossRefGoogle Scholar
  63. 63.
    Mutlu, B.R., Edd, J.F. & Toner, M. Oscillatory inertial focusing in infinite microchannels. Proc. Natl. Acad. Sci. U.S.A. 115, 7682–7687 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations