Advertisement

BioChip Journal

, Volume 8, Issue 2, pp 115–121 | Cite as

A highly UV-transparent fused silica biochip for sensitive hepatotoxicity testing by autofluorescence

  • Michael Fritzsche
  • Joachim Fritzsche
  • Jonas O. Tegenfeldt
  • Carl-Fredrik MandeniusEmail author
Original Article

Abstract

Fabrication and application of a non-fluorescent and UV-transparent microfluidic biochip in fused silica that allows sensitive autofluorescence detection are described. The biochip is particularly useful in cell-based assays where the most informative autofluorescence signals from the cells reside in the ultraviolet spectral range and where plastic labware materials commonly used in cell culture work severely disturb such measurements. In this study the fused silica biochip was used for measuring intrinsic autofluorescence from liver cells in order to assess hepatotoxic effects of drugs. The assessment assay was carried out with the human liver cell line HepG2 under perfusion conditions in the microfluidics of the biochip. The autofluorescence from the liver cells exposed to quinidine was readily recorded without background disturbance and correlated well with reference toxicity data.

Keywords

Autofluorescence Drug testing Microfluidic chip Fused silica In vitro toxicity HepG2 cell line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chin, C.D., Linder, V. & Sia, S.K. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip 7, 41–57 (2007).CrossRefGoogle Scholar
  2. 2.
    Wu, M.H., Huang, S.B. & Lee, G.B. Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010).CrossRefGoogle Scholar
  3. 3.
    Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006).CrossRefGoogle Scholar
  4. 4.
    Qasaimeh, M.A., Ricoult, S.G. & Juncker, D. Microfluidic probes for use in life sciences and medicine. Lab Chip 13, 40–50 (2013).CrossRefGoogle Scholar
  5. 5.
    Gernaey, K. et al. Monitoring and control of microbioreactors: An expert opinion on development needs. Biotechnol. J. 7, 1308–1314 (2012).CrossRefGoogle Scholar
  6. 6.
    Sung, J.H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201–1212 (2013).CrossRefGoogle Scholar
  7. 7.
    Mandenius, C.-F. et al. Toward preclinical predictive drug testing for metabolism and hepatotoxicity by using in vitro models derived from human embryonic stem cells and human cell lines: a report on the Vitrocellomics EU-project. Altern. Lab Anim. (ATLA) 39, 147–171 (2011).Google Scholar
  8. 8.
    Khetani, S.R. & Bhatia, S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26, 120–126 (2008).CrossRefGoogle Scholar
  9. 9.
    Lee, P.J., Hung, P.J. & Lee, L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340–1346 (2007).CrossRefGoogle Scholar
  10. 10.
    Fritzsche, M., Fredriksson, J.M., Carlsson, M. & Mandenius, C.-F. A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy. Anal. Biochem. 387, 271–275 (2009).CrossRefGoogle Scholar
  11. 11.
    Greif, D., Galla, L., Ros, A. & Anselmetti, D. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection. J. Chromatogr. A 1206, 83–88 (2008).CrossRefGoogle Scholar
  12. 12.
    Schulze, P., Ludwig, M., Kohler, F. & Belder, D. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem. 77, 1325–1329 (2005).CrossRefGoogle Scholar
  13. 13.
    Kim, L., Toh, Y.-C., Voldman, J. & Yu, H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7, 681–694 (2007).CrossRefGoogle Scholar
  14. 14.
    Baudoin, R., Griscom, L., Prot, J.M., Legallais, C. & Leclerc, E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 53, 172–181 (2011).CrossRefGoogle Scholar
  15. 15.
    Leclerc, E., Sakai, Y. & Fujii, T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdevices 5, 109–114 (2003).CrossRefGoogle Scholar
  16. 16.
    Toh, Y.-C. et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7, 302–309 (2007).CrossRefGoogle Scholar
  17. 17.
    Leclerc, E., Sakai, Y. & Fujii, T. Perfusion culture of fetal human hepatocytes in microfluidic environments. Biochem. Eng. J. 20, 143–148 (2004).CrossRefGoogle Scholar
  18. 18.
    Sung, J.H. & Shuler, M.L. In vitro microscale systems for systematic drug toxicity study. Bioproc. Biosyst. Eng. 33, 5–19 (2010).CrossRefGoogle Scholar
  19. 19.
    Ma, B., Zhang, G., Qin, J. & Lin, B. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9, 232–238 (2009).CrossRefGoogle Scholar
  20. 20.
    Trujillo, T.C. & Nolan, P.E. Antiarrhythmic agents: drug interactions of clinical significance. Drug Safety 23, 509–532 (2000).CrossRefGoogle Scholar
  21. 21.
    De Bartolo, L. et al. Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor. Biomaterials 27, 4794–4803 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Fritzsche
    • 1
  • Joachim Fritzsche
    • 2
  • Jonas O. Tegenfeldt
    • 3
  • Carl-Fredrik Mandenius
    • 1
    Email author
  1. 1.Division of Biotechnology/IFMLinköping UniversityLinköpingSweden
  2. 2.Department of PhysicsUniversity of GothenburgGothenburgSweden
  3. 3.Division of Solid State PhysicsLund UniversityLundSweden

Personalised recommendations