BioChip Journal

, Volume 8, Issue 1, pp 55–59

Rapid hemagglutinin subtyping of novel avian-origin influenza A(H7N9) virus using a diagnostic microarray

  • Dong-Hun Lee
  • Ji-Hoon Kim
  • Seong-Su Yuk
  • Jung-Hoon Kwon
  • Hyunseok Cho
  • Seung Yong Hwang
  • Hyun-Mi Kang
  • Youn-Jeong Lee
  • Sang-Won Lee
  • In-Soo Choi
  • Chang-Seon Song
Original Article
  • 136 Downloads

Abstract

An epidemic of human H7N9 influenza virus infection has recently emerged in China, caused by the novel reassortant avian-origin influenza A virus subtype H7N9. The ability to readily identify novel strains will allow a more rapid response, in order to reduce the spread of the disease and minimize the chance of a worldwide flu pandemic. We developed a low-density microarray for the rapid detection and identification of avian influenza virus subtypes H5, H7, and H9 in a previous study. In the present study, we evaluated this diagnostic microarray using an artificially synthesized novel H7N9 virus hemagglutinin gene and Korean H7 viruses isolated from wild bird habitats. Cy3-labeled DNA targets were generated by reverse transcription polymerase chain reaction using Cy3-labeled universal primers, and labeled amplicons hybridized to the microarray. All subtypes were correctly determined and identical to nucleotide sequencing results. This diagnostic microarray has enormous potential for the rapid detection of H7N9 viruses.

Keywords

Influenza virus H7N9 Diagnostic microarray Subtyping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, D.J. An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644, doi:10.1016/j.vaccine.2006.10.051 (2007).CrossRefGoogle Scholar
  2. 2.
    Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. The New England Journal of Medicine 368, 1888–1897, doi:10.1056/NEJMoa1304459 (2013).CrossRefGoogle Scholar
  3. 3.
    Lam, T.T. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502, 241–244, doi:10.1038/nature12515 (2013).CrossRefGoogle Scholar
  4. 4.
    Suarez, D.L., Das, A. & Ellis, E. Review of rapid molecular diagnostic tools for avian influenza virus. Avian Diseases 51, 201–208 (2007).CrossRefGoogle Scholar
  5. 5.
    Spackman, E. et al. Development of real-time RTPCR for the detection of avian influenza virus. Avian Diseases 47, 1079–1082 (2003).CrossRefGoogle Scholar
  6. 6.
    Han, X. et al. Simultaneously subtyping of all influenza A viruses using DNA microarrays. Journal of Virological Methods 152, 117–121 (2008).CrossRefGoogle Scholar
  7. 7.
    Kessler, N., Ferraris, O., Palmer, K., Marsh, W. & Steel, A. Use of the DNA flow-thru chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. Journal of Clinical Microbiology 42, 2173–2185 (2004).CrossRefGoogle Scholar
  8. 8.
    Li, J., Chen, S. & Evans, D.H. Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR. Journal of Clinical Microbiology 39, 696–704 (2001).CrossRefGoogle Scholar
  9. 9.
    Dawson, E.D. et al. Identification of A/H5N1 influenza viruses using a single gene diagnostic microarray. Analytical Chemistry 79, 378–384 (2007).CrossRefGoogle Scholar
  10. 10.
    Dawson, E.D. et al. MChip: a tool for influenza surveillance. Analytical Chemistry 78, 7610–7615 (2006).CrossRefGoogle Scholar
  11. 11.
    Liu, R.H. et al. Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Analytical Chemistry 78, 4184–4193 (2006).CrossRefGoogle Scholar
  12. 12.
    Palacios, G. et al. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerging Infectious Diseases 13, 73–81 (2007).CrossRefGoogle Scholar
  13. 13.
    Sengupta, S., Onodera, K., Lai, A. & Melcher, U. Molecular detection and identification of influenza viruses by oligonucleotide microarray hybridization. Journal of Clinical Microbiology 41, 4542–4550 (2003).CrossRefGoogle Scholar
  14. 14.
    Townsend, M.B. et al. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance. Journal of Clinical Microbiology 44, 2863–2871 (2006).CrossRefGoogle Scholar
  15. 15.
    Lee, D.H. et al. A Diagnostic Microarray for Subtyping and Pathotyping Avian Influenza Virus. BioChip J 3, 57–64 (2009).Google Scholar
  16. 16.
    Hoffmann, E., Stech, J., Guan, Y., Webster, R.G. & Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology 146, 2275–2289 (2001).CrossRefGoogle Scholar
  17. 17.
    Uyeki, T.M. & Cox, N.J. Global concerns regarding novel influenza A (H7N9) virus infections. The New England Journal of Medicine 368, 1862–1864, doi: 10.1056/NEJMp1304661 (2013).CrossRefGoogle Scholar
  18. 18.
    Lee, D.-H. et al. A Diagnostic Microarray for Subtyping and Pathotyping Avian Influenza Virus. BioChip J. 3, 57–64 (2009).Google Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dong-Hun Lee
    • 1
  • Ji-Hoon Kim
    • 2
  • Seong-Su Yuk
    • 1
  • Jung-Hoon Kwon
    • 1
  • Hyunseok Cho
    • 2
  • Seung Yong Hwang
    • 2
    • 3
  • Hyun-Mi Kang
    • 4
  • Youn-Jeong Lee
    • 4
  • Sang-Won Lee
    • 1
  • In-Soo Choi
    • 1
  • Chang-Seon Song
    • 1
  1. 1.Avian Diseases Laboratory, College of Veterinary MedicineKonkuk UniversitySeoulKorea
  2. 2.GenoCheck Co. Ltd.Guro-gu, SeoulKorea
  3. 3.Department of BiochemistryHanyang UniversitySangnok-gu, Ansan, Gyeonggi-doKorea
  4. 4.Avian Disease DivisionAnimal and Plant Quarantine AgencyAnyangsi, GyeonggidoKorea

Personalised recommendations