BioChip Journal

, Volume 8, Issue 1, pp 42–47 | Cite as

Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells

  • Vera Faustino
  • Diana Pinho
  • Tomoko Yaginuma
  • Ricardo C. Calhelha
  • Isabel C.F.R. Ferreira
  • Rui LimaEmail author
Original Article


Red blood cell (RBC) deformability has become one of the important factors to assess blood and cardiovascular diseases. The interest on blood studies have promoted a development of various microfluidic devices that treat and analyse blood cells. Recent years, besides the RBC deformability assessment, these devices are often applied to cancer cell detection and isolation from the whole blood. The devices for cancer cell isolation rely mainly on size and deformability of the cells. However, the examination of deformability of the RBCs mixed with cancer cells is lacking. This study aims at determining the deformation index (DI) of the RBCs in contact with cancer cells using a hyperbolic microchannel which generates a strong extensional flow. The DIs of human healthy RBCs and human RBCs in contact with a tumor cell line (HCT-15, colon carcinoma) were compared by analyzing the flowing RBCs images captured by a high speed camera. The results reveal that the RBCs that were in contact with HCT-15 cells have lower deformability than the normal RBCs.


Biomicrofluidics Microfluidic devices Blood on chips Red blood cells Cell deformability Deformation index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caro, C., Pedley, T., Schroter, R. & Seed, W. The Mechanics of the Circulation. Oxford University Press (1978).Google Scholar
  2. 2.
    Skalak, R. & Branemark, P-I. Deformation of red blood cells in capillaries. Science 164, 717–719 (1969).CrossRefGoogle Scholar
  3. 3.
    Abkarian, M. et al. Cellular-scale hydrodynamics. Biomed. Mater. 3, 034011 (2008).CrossRefGoogle Scholar
  4. 4.
    Hardeman, M.R. & Ince, C. Clinical potential of in vitro measured red cell deformability, a myth? Clin. Hemorheol. Microcirc. 21, 277–284 (1999).Google Scholar
  5. 5.
    Cho, Y.I., Mooney, M.P. & Cho, D.J. Hemorheological disorders in diabetes mellitus. J. Diabetes Sci. Technol. 2, 1130–1138 (2008).CrossRefGoogle Scholar
  6. 6.
    Gueguen, M. et al. Filtration pressure and red blood cell deformability: evaluation of a new device: erythrometre. Biorheology Suppl 1, 261–265 (1984).Google Scholar
  7. 7.
    Shin, S., Ku, Y., Park, M.S. & Suh, J.S. Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer. Korea-Australia Rheol. J. 16, 85–90 (2004).Google Scholar
  8. 8.
    Dobbe, J.G.G. et al. Analyzing red blood cell-deformability distributions. Blood Cells Mol. Dis. 28, 373–384 (2002).CrossRefGoogle Scholar
  9. 9.
    Mokken, F.C., Kedaria, M., Henny, C.P., Hardeman, M.R. & Gelb, A.W. The clinical importance of erythtrocyte deformability, a hemorrheological parameter. Ann. Hematol. 64, 113–122 (1992).CrossRefGoogle Scholar
  10. 10.
    Bow, H. et al. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11, 1065–1073 (2011).CrossRefGoogle Scholar
  11. 11.
    Lima, R. et al. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices 10, 153–167 (2008).CrossRefGoogle Scholar
  12. 12.
    Fujiwara, H. et al. Red blood cell motions in a high hematocrit blood flowing through a stenosed microchannel. J. Biomech. 42, 838–843 (2009).CrossRefGoogle Scholar
  13. 13.
    Lima, R. et al. Axisymmetric PDMS microchannels for in vitro haemodynamics studies. Biofabrication 1, 035005 (2009).CrossRefGoogle Scholar
  14. 14.
    Lee, S.S., Yim, Y., Ahn, K.H. & Lee, S.J. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed. Microdevices 11, 1021–1027 (2009).CrossRefGoogle Scholar
  15. 15.
    Zhao, R. et al. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 43, 747–765 (2006).Google Scholar
  16. 16.
    Yaginuma, T., Oliveira, M.S.N., Lima, R., Ishikawa, T. & Yamaguchi, T. Human red blood cell behavior under homogeneous extensional flow in a hyperbolicshaped microchannel. Biomicrofluidics 7, 054110 (2013).CrossRefGoogle Scholar
  17. 17.
    Pinho, D., Yaginuma, T. & Lima, R. A microfluidic device for partial cell separation and deformability assessment. BioChip J. 7, 367–374 (2013).CrossRefGoogle Scholar
  18. 18.
    Hou, H.W. et al. Microfluidics for applications in cell mechanics and mechanobiology. Cel. Mol. Bioeng. 4, 591–602, (2011).CrossRefGoogle Scholar
  19. 19.
    Tan, S.J., Yobas, L., Lee, G.Y., Ong, C.N. & Lim, C.T. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009).CrossRefGoogle Scholar
  20. 20.
    Mohamed, H., Murray, M., Turner, J.N. & Caggana, M. Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216, 8289–8295 (2009).CrossRefGoogle Scholar
  21. 21.
    Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R. & Di Carlo, D. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11, 912–920 (2011).CrossRefGoogle Scholar
  22. 22.
    Tanaka, T. et al. Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip 12, 4336–4343 (2012).CrossRefGoogle Scholar
  23. 23.
    Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal. Chem. 85, 6213–6218 (2013).CrossRefGoogle Scholar
  24. 24.
    Jain, R.K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).Google Scholar
  25. 25.
    Sevick, E.M. & Jain, R.K. Effect of red blood cell rigidity on tumor blood flow: increase in viscous resistance during hyperglycemia. Cancer Res. 51, 2727–2730 (1991).Google Scholar
  26. 26.
    Kuzman, D. et al. Effect of pH on red blood cell deformability. Pflugers Arch. 440, R193–194 (2000).CrossRefGoogle Scholar
  27. 27.
    Griffiths, J.R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).CrossRefGoogle Scholar
  28. 28.
    Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRefGoogle Scholar
  29. 29.
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).CrossRefGoogle Scholar
  30. 30.
    Abramoff, M.D., Magalhaes, P.J. & Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).Google Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vera Faustino
    • 1
  • Diana Pinho
    • 1
  • Tomoko Yaginuma
    • 1
  • Ricardo C. Calhelha
    • 1
    • 2
  • Isabel C.F.R. Ferreira
    • 1
    • 2
  • Rui Lima
    • 1
    • 3
    Email author
  1. 1.Polytechnic Institute of BragançaIPB, C. Sta. ApolóniaBragançaPortugal
  2. 2.CIMOC. Sta. ApolóniaBragançaPortugal
  3. 3.CEFTFaculdade de Engenharia da Universidade do Porto (FEUP)PortoPortugal

Personalised recommendations