BioChip Journal

, Volume 6, Issue 3, pp 254–261 | Cite as

Gene expression profile analysis in cultured human neuronal cells after static magnetic stimulation

  • Wooseok Im
  • Soon-Tae Lee
  • Seung Chan KimEmail author
Original Research


Although the magnetic force has been used in various human environments and medicines, their influence on the nervous system has not been fully elucidated. In this study, we investigated mRNA expressions profiles of neuronal cells after the application of static magnetic fields. Two perpetual magnets were applied to the cultured SH-SY5Y human neuronal cell, and the gene expression profiles were evaluated by using human mRNA microarray targeting 30968 genes. Results showed that the expressions of 827-known genes were altered in response to the magnetic force. Among them, 112 genes showed significant changes (>2-fold changes); 44 genes were up-regulated and 68 genes were down-regulated. Among the upregulated genes, we further confirmed the increased expressions of synapsin III and chloride channel-2 by using RT-PCR and immunocytochemistry. These results suggest that static magnetic fields influence neuronal-and biological-related gene expression profiles in human neuronal cells.


magnetic field gene expression human neuronal cell Synapsin III expression profile Chloride channel-2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goto, Y. et al. The magnetism responsive gene Ntan1 in mouse brain. Neurochem. Int. 49, 334–341 (2006).CrossRefGoogle Scholar
  2. 2.
    Hirai, T. & Yoneda, Y. Transcriptional regulation of neuronal genes and its effect on neural functions: gene expression in response to static magnetism in cultured rat hippocampal neurons. J. Pharmacol. Sci. 98, 219–224 (2005).CrossRefGoogle Scholar
  3. 3.
    Kanno, M., Chuma, T. & Mano, Y. Monitoring an electroencephalogram for the safe application of therapeutic repetitive transcranial magnetic stimulation. J. Neurol. Neurosurg. Psychiatry 71, 559–560 (2001).CrossRefGoogle Scholar
  4. 4.
    Bassett, C.A. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Crit. Rev. Biomed. Eng. 17, 451–529 (1989).Google Scholar
  5. 5.
    Bassett, C.A. Bioelectromagnetics in the service of medicine: acceptance speech on the occasion of receiving the d’Arsonval Medal. Bioelectromagnetics 13, 7–17 (1992).CrossRefGoogle Scholar
  6. 6.
    Hasey, G. Transcranial magnetic stimulation in the treatment of mood disorder: a review and comparison with electroconvulsive therapy. Can. J. Psychiatry 46, 720–727 (2001).Google Scholar
  7. 7.
    Cordeiro, P.G., Seckel, B.R., Miller, C.D., Gross, P.T. & Wise, R.E. Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat. Plast. Reconstr. Surg. 83, 301–308 (1989).CrossRefGoogle Scholar
  8. 8.
    Sandyk, R., Anninos, P.A., Tsagas, N. & Derpapas, K. Magnetic fields in the treatment of Parkinson’s disease. Int. J. Neurosci. 63, 141–150 (1992).CrossRefGoogle Scholar
  9. 9.
    Kim, S. et al. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J. Neurosci. Methods 174, 91–96 (2008).CrossRefGoogle Scholar
  10. 10.
    Jones-Villeneuve, E.M., McBurney, M.W., Rogers, K.A. & Kalnins, V.I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell. Biol. 94, 253–262 (1982).CrossRefGoogle Scholar
  11. 11.
    Potenza, L. et al. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat. Res. 561, 53–62 (2004).CrossRefGoogle Scholar
  12. 12.
    Enz, R., Ross, B.J. & Cutting, G.R. Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J. Neurosci. 19, 9841–9847 (1999).Google Scholar
  13. 13.
    Smith, R.L., Clayton, G.H., Wilcox, C.L., Escudero, K.W. & Staley, K.J. Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: a potential mechanism for cell-specific modulation of postsynaptic inhibition. J. Neurosci. 15, 4057–4067 (1995).Google Scholar
  14. 14.
    Staley, K., Smith, R., Schaack, J., Wilcox, C. & Jentsch, T.J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17, 543–551 (1996).CrossRefGoogle Scholar
  15. 15.
    Misgeld, U., Deisz, R.A., Dodt, H.U. & Lux, H.D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415 (1986).CrossRefGoogle Scholar
  16. 16.
    Thompson, S.M. & Gahwiler, B.H. Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J. Neurophysiol. 61, 501–511 (1989).Google Scholar
  17. 17.
    Staley, K. The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J. Neurophysiol. 72, 273–284 (1994).Google Scholar
  18. 18.
    Rohrbough, J. & Spitzer, N.C. Regulation of intracellular Cl-levels by Na (+)-dependent Cl-cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci. 16, 82–91 (1996).Google Scholar
  19. 19.
    Ivanov, K.L., Yurkovskaya, A.V. & Vieth, H.M. Coherent transfer of hyperpolarization in coupled spin systems at variable magnetic field. J. Chem. Phys. 128, 154701 (2008).CrossRefGoogle Scholar
  20. 20.
    Nuccitelli, S. et al. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann. N Y Acad. Sci. 1090, 217–225 (2006).CrossRefGoogle Scholar
  21. 21.
    Fernandez, N., Andreasen, M. & Nedergaard, S. Influence of the hyperpolarization-activated cation current, I (h), on the electrotonic properties of the distal apical dendrites of hippocampal CA1 pyramidal neurones. Brain Res. 930, 42–52 (2002).CrossRefGoogle Scholar
  22. 22.
    Ferreira, A. & Rapoport, M. The synapsins: beyond the regulation of neurotransmitter release. Cell. Mol. Life Sci. 59, 589–595 (2002).CrossRefGoogle Scholar
  23. 23.
    Ferreira, A., Kao, H.T., Feng, J., Rapoport, M. & Greengard, P. Synapsin III: developmental expression, subcellular localization, and role in axon formation. J. Neurosci. 20, 3736–3744 (2000).Google Scholar
  24. 24.
    Kao, H.T. et al. A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nat. Neurosci. 5, 431–437 (2002).Google Scholar
  25. 25.
    Porton, B., Ferreira, A., DeLisi, L.E. & Kao, H.T. A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol. Psychiatry. 55, 118–125 (2004).CrossRefGoogle Scholar
  26. 26.
    Pieribone, V.A. et al. Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J. Comp. Neurol. 454, 105–114 (2002).CrossRefGoogle Scholar
  27. 27.
    Pieribone, V.A. et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497 (1995).CrossRefGoogle Scholar
  28. 28.
    Rosahl, T.W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).CrossRefGoogle Scholar
  29. 29.
    De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. The synapsins. Annu. Rev. Cell. Biol. 6, 433–460 (1990).CrossRefGoogle Scholar
  30. 30.
    Miyakoshi, J., Ohtsu, S., Shibata, T. & Takebe, H. Exposure to magnetic field (5 mT at 60 Hz) does not affect cell growth and c-myc gene expression. J. Radiat. Res. (Tokyo). 37, 185–191 (1996).CrossRefGoogle Scholar
  31. 31.
    Okano, H. Effects of static magnetic fields in biology: role of free radicals. Front. Biosci. 13, 6106–6125 (2008).CrossRefGoogle Scholar
  32. 32.
    Garcia, A.M., Sisternas, A. & Hoyos, S.P. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int. J. Epidemiol. 37, 329–340 (2008).CrossRefGoogle Scholar
  33. 33.
    Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic. Acids. Res. 30, e15 (2002).Google Scholar
  34. 34.
    Olsen, M.L., Schade, S., Lyons, S.A., Amaral, M.D. & Sontheimer, H. Expression of voltage-gated chloride channels in human glioma cells. J. Neurosci. 23, 5572–5582 (2003).Google Scholar
  35. 35.
    Porton, B., Kao, H.T. & Greengard, P. Characterization of transcripts from the synapsin III gene locus. J. Neurochem. 73, 2266–2271 (1999).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Life Science & BiotechnologyYonsei UniversitySeoulKorea
  2. 2.Department of NeurologySeoul National University HospitalSeoulKorea
  3. 3.Program in Neuroscience, Neuroscience Research Institute of SNUMRCSeoul National UniversitySeoulKorea

Personalised recommendations