Advertisement

BioChip Journal

, Volume 5, Issue 4, pp 353–361 | Cite as

Molecular analysis of melatonin-induced changes in breast cancer cells: microarray study of anti-cancer effect of melatonin

  • Seung Eun Lee
  • Seung Jun Kim
  • Hana Yang
  • Seong Il Jeong
  • Seung Yong Hwang
  • Cheung-Seog Park
  • Yong Seek ParkEmail author
Original Research

Abstract

Melatonin is a pineal secretory product that acts as a chemical messenger for the dark/light cycle and plays a central role in synchronization of circadian rhythms. Melatonin has been reported to exhibit a variety of therapeutic effects, including antiaging, anti-oxidative, anti-inflammation, and anticancer (such as induction of tumor suppressor genes and suppression of the metabolism of tumor cells, including breast cancer cells). In this study, we investigated the genome-wide transcriptional responses of MCF-7 human breast cancer cells exposed to melatonin by microarray gene expression profiling. We identified 1,946 and 983 genes that were 2-fold up- or down-regulated within 72 h of 1 nM and 100 nM melatonin treatment. Gene Ontology (GO) enrichment analysis was performed for identification of the biological functions and biological processes affected by the differential expression of genes in melatonin-stimulated cells. The differentially expressed genes that were dysregulated in many biological functions included cell proliferation, immune responses, translation, cell adhesion, apoptosis, and cell cycle. Our findings support the view that melatonin-stimulated changes in gene expression contribute to the anticancer effect of melatonin in breast cancer cells.

Keywords

Melatonin Breast cancer Anti-cancer effect Gene expression profile MCF-7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arendt, J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev. Reprod. 3, 13–22 (1998).CrossRefGoogle Scholar
  2. 2.
    Pevet, P., Bothorel, B., Slotten, H. & Saboureau, M. The chronobiotic properties of melatonin. Cell Tissue Res. 309, 183–191 (2002).CrossRefGoogle Scholar
  3. 3.
    Dollins, A.B., Zhdanova, I.V., Wurtman, R.J., Lynch, H.J. & Deng, M.H. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc. Natl. Acad. Sci. USA 91, 1824–1828 (1994).CrossRefGoogle Scholar
  4. 4.
    Carrillo-Vico, A. et al. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and antiapoptotic effects. J. Pineal Res. 39, 400–408 (2005).CrossRefGoogle Scholar
  5. 5.
    Paradies, G., Petrosillo, G., Paradies, V., Reiter, R.J. & Ruggiero, F.M. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J. Pineal. Res. 48, 297–310 (2010).CrossRefGoogle Scholar
  6. 6.
    Petrosillo, G., Moro, N., Paradies, V., Ruggiero, F.M. & Paradies, G. Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J. Pineal Res. 48, 340–346 (2010).CrossRefGoogle Scholar
  7. 7.
    Reiter, R.J. et al. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv. Med. Sci. 52, 11–28 (2007).Google Scholar
  8. 8.
    Hill, S.M. et al. Molecular mechanisms of melatonin anticancer effects. Integr. Cancer Ther. 8, 337–346 (2009).CrossRefGoogle Scholar
  9. 9.
    Joo, S.S. & Yoo, Y.M. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J. Pineal Res. 47, 8–14 (2009).CrossRefGoogle Scholar
  10. 10.
    Karbownik, M., Lewinski, A. & Reiter, R.J. Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants. Int. J. Biochem. Cell Biol. 33, 735–753 (2001).CrossRefGoogle Scholar
  11. 11.
    Reiter, R.J. Melatonin: clinical relevance. Best Pract. Res. Clin. Endocrinol. Metab. 17, 273–285 (2003).CrossRefGoogle Scholar
  12. 12.
    Blask, D.E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 65, 11174–11184 (2005).CrossRefGoogle Scholar
  13. 13.
    Cini, G. et al. Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J. Pineal Res. 39, 12–20 (2005).CrossRefGoogle Scholar
  14. 14.
    Lee, S.E. et al. MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J. Pineal Res. 51, 345–352 (2011).CrossRefGoogle Scholar
  15. 15.
    Cos, S. & Blask, D.E. Melatonin modulates growth factor activity in MCF-7 human breast cancer cells. J. Pineal Res. 17, 25–32 (1994).CrossRefGoogle Scholar
  16. 16.
    Cos, S. & Sanchez-Barcelo, E.J. Melatonin and mammary pathological growth. Front Neuroendocrinol 21, 133–170 (2000).CrossRefGoogle Scholar
  17. 17.
    Martinez-Campa, C. et al. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br. J. Cancer 101, 1613–1619 (2009).CrossRefGoogle Scholar
  18. 18.
    Girgert, R., Hanf, V., Emons, G. & Grundker, C. Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J. Pineal Res. 47, 23–31 (2009).CrossRefGoogle Scholar
  19. 19.
    Cucina, A. et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J. Pineal Res. 46, 172–180 (2009).CrossRefGoogle Scholar
  20. 20.
    Huangda, W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–175 (2007).CrossRefGoogle Scholar
  21. 21.
    Pandi-Perumal, S.R., Srinivasan, V., Spence, D.W. & Cardinali, D.P. Role of the melatonin system in the control of sleep: therapeutic implications. CNS Drugs 21, 995–1018 (2007).CrossRefGoogle Scholar
  22. 22.
    Tan, D.X. et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2, 181–197 (2002).CrossRefGoogle Scholar
  23. 23.
    Futagami, M., Sato, S., Sakamoto, T., Yokoyama, Y. & Saito, Y. Effects of melatonin on the proliferation and cis-diamminedichloroplatinum (CDDP) sensitivity of cultured human ovarian cancer cells. Gynecol. Oncol. 82, 544–549 (2001).CrossRefGoogle Scholar
  24. 24.
    Leja-Szpak, A., Jaworek, J., Pierzchalski, P. & Reiter, R.J. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J. Pineal Res. 49, 248–255 (2010).CrossRefGoogle Scholar
  25. 25.
    Martin-Renedo, J. et al. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J. Pineal Res. 45, 532–540 (2008).CrossRefGoogle Scholar
  26. 26.
    Um, H.J. & Kwon, T.K. Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in renal carcinoma Caki cells. J. Pineal Res. 49, 283–290 (2010).CrossRefGoogle Scholar
  27. 27.
    Blask, D.E., Dauchy, R.T. & Sauer, L.A. Putting cancer to sleep at night-The neuroendocrine/circadian melatonin signal. Endocrine 27, 179–188 (2005).CrossRefGoogle Scholar
  28. 28.
    Mediavilla, M.D., Cos, S. & Sanchez-Barcelo, E.J. Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci. 65, 415–420 (1999).CrossRefGoogle Scholar
  29. 29.
    Cos, S., Fernandez, R., Guezmes, A. & Sanchez-Barcelo, E.J. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 58, 4383–4390 (1998).Google Scholar
  30. 30.
    Jacobsen, J. et al. Catalytic properties of ADAM12 and its domain deletion mutants. Biochemistry 47, 537–547 (2008).CrossRefGoogle Scholar
  31. 31.
    Dyczynska, E., Syta, E., Sun, D. & Zolkiewska, A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int. J. Cancer 122, 2634–2640 (2008).CrossRefGoogle Scholar
  32. 32.
    Stautz, D. et al. ADAM12 localizes with c-Src to actinrich structures at the cell periphery and regulates Src kinase activity. Exp. Cell Res. 316, 55–67 (2010).CrossRefGoogle Scholar
  33. 33.
    Rizzotti, M. et al. The effect of extracellular matrix modifications on UDP-glucose dehydrogenase activity in cultured human skin fibroblasts. Basic Appl. Histochem. 30, 85–92 (1986).Google Scholar
  34. 34.
    Auvinen, P. et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156, 529–536 (2000).CrossRefGoogle Scholar
  35. 35.
    Huh, J.W. et al. Inhibition of human UDP-glucose dehydrogenase expression using siRNA expression vector in breast cancer cells. Biotechnol. Lett. 27, 1229–1232 (2005).CrossRefGoogle Scholar
  36. 36.
    Hwang, E.Y. et al. Inhibitory effects of gallic acid and quercetin on UDP-glucose dehydrogenase activity. FEBS Lett. 582, 3793–3797 (2008).CrossRefGoogle Scholar
  37. 37.
    Lee, S.E. et al. Uncaria rhynchophylla induces heme oxygenase-1 as a cytoprotective effect in RAW 264.7 macrophages. Mol. Cell. Toxicol. 6, 33–40 (2010).CrossRefGoogle Scholar
  38. 38.
    Jeong, S.I. et al. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol. 6, 373–380 (2010).CrossRefGoogle Scholar
  39. 39.
    Yang, H. et al. Expression profile analysis of human umbilical vein endothelial cells treated with salvianolic acid B from Salvia miltiorrhiza. BioChip J. 5, 47–55 (2011).CrossRefGoogle Scholar
  40. 40.
    Jeong, S.I. et al. Genome-wide analysis of gene expression by crotonaldehyde in human umbilical vein endothelial cells. Mol. Cell. Toxicol. 7, 129–136 (2011).CrossRefGoogle Scholar
  41. 41.
    Lee, S.E. et al. Methylglyoxal-mediated alteration of gene expression in human endothelial cells. BioChip J. 5, 220–228 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Seung Eun Lee
    • 1
  • Seung Jun Kim
    • 2
  • Hana Yang
    • 1
  • Seong Il Jeong
    • 1
  • Seung Yong Hwang
    • 2
    • 3
  • Cheung-Seog Park
    • 1
  • Yong Seek Park
    • 1
  1. 1.Department of Microbiology, School of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Genocheck Co., Ltd.Ansan, Gyeonggi-doKorea
  3. 3.Department of BiochemistryHanyang UniversityAnsan, Gyeonggi-doKorea

Personalised recommendations