BioChip Journal

, Volume 5, Issue 2, pp 106–113 | Cite as

Mechanical stimulation of bovine embryos in a microfluidic culture platform

  • Chae Yun Bae
  • Minseok S. Kim
  • Je-Kyun Park
Original Research


We demonstrate a membrane-based microfluidic in vitro cultivation system that regulates the pattern of mechanical stimulation using a micro-modulated syringe pump. Using independent control of flow and compressive force, we applied an in vivo-like mechanical stimulus to bovine embryos in a microfluidic channel. To compare the accuracy of the compressive strain, we observed any morphological change in the embryos using a lateral view of the microfluidic device. Moreover, the compressive strain via mechanical stimuli with different duration times was analyzed. Based on the mechanical behavior of the stimulated embryos, we found that both the amplitude of the pressure and the duration of the stimulus were significant factors. The device is expected to be useful for the development of new methods to precisely control the mechanical stimulation of embryonic growth by mimicking peristaltic constriction in vivo.


Microfluidics Bovine embryos In vitro cultivation Compressive strain Peristaltic contraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hagmann, M. Fertility therapy may aid gene transfer. Science 284, 1097–1098 (1999).CrossRefGoogle Scholar
  2. 2.
    Glosgow, I.K. et al. Handling individual mammalian embryos using microfluidics. IEEE Trans. Biomed. Eng. 48, 570–578 (2001).CrossRefGoogle Scholar
  3. 3.
    Gardner, D.K. & Lane, M. Culture of viable human blastocysts in defined sequential serum-free media. Hum. Reprod. 13 Suppl 3, 148–159; discussion 160 (1998).Google Scholar
  4. 4.
    Ravindranatha, B.M., Nandi, S., Raghu, H.M. & Reddy, S.M. In vitro maturation and fertilization of buffalo oocytes: effects of storage of ovaries, IVM temperatures, storage of processed sperm and fertilization media. Reprod. Domest. Anim. 38, 21–26 (2003).CrossRefGoogle Scholar
  5. 5.
    Beebe, D.J., Mensing, G.A. & Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).CrossRefGoogle Scholar
  6. 6.
    Quake, S.R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).CrossRefGoogle Scholar
  7. 7.
    Cho, B.S. et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003).CrossRefGoogle Scholar
  8. 8.
    Zeringue, H.C., Rutledge, J.J. & Beebe, D.J. Early mammalian embryo development depends on cumulus removal technique. Lab Chip 5, 86–90 (2005).CrossRefGoogle Scholar
  9. 9.
    Clark, S.G., Haubert, K., Beebe, D.J., Ferguson, C.E. & Wheeler, M.B. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 5, 1229–1232 (2005).CrossRefGoogle Scholar
  10. 10.
    Raty, S. et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4, 186–190 (2004).CrossRefGoogle Scholar
  11. 11.
    Walters, E.M., Clark, S.G., Beebe, D.J. & Wheeler, M.B. Mammalian embryo culture in a microfluidic device. Methods Mol. Biol. 254, 375–382 (2004).Google Scholar
  12. 12.
    Heo, Y.S. et al. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 79, 1126–1134 (2007).CrossRefGoogle Scholar
  13. 13.
    Heo, Y.S. et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod. 25, 613–622 (2010).CrossRefGoogle Scholar
  14. 14.
    Melin, J. et al. In vitro embryo culture in defined, sub-microliter volumes. Dev. Dyn. 238, 950–955 (2009).CrossRefGoogle Scholar
  15. 15.
    Anand, S. & Guha, S.K. Mechanics of transport of the ovum in the oviduct. Med. Biol. Eng. Comput. 16, 256–261 (1978).CrossRefGoogle Scholar
  16. 16.
    Lindblom, B. et al. Prostaglandins and oviductal function. Acta Obstet. Gynecol. Scand. Suppl. 113, 43–46 (1983).CrossRefGoogle Scholar
  17. 17.
    Aref, I. & Hafez, E.S. Oviduct contractility and egg transport in the rabbit. Obstet. Gynecol. 42, 165–171 (1973).Google Scholar
  18. 18.
    Kim, M.S., Bae, C.Y., Wee, G., Han, Y.M. & Park, J.K. A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis 30, 3276–3282 (2009).CrossRefGoogle Scholar
  19. 19.
    Boukallel, M., Gauthier, M., Dauge, M., Piat, E. & Abadie, J. Smart microrobots for mechanical cell characterization and cell convoying. IEEE Trans. Biomed. Eng. 54, 1536–1540 (2007).CrossRefGoogle Scholar
  20. 20.
    Talo, A. & Brundin, J. Muscular activity in the rabbit oviduct: a combination of electric and mechanic recordings. Biol. Reprod. 5, 67–77 (1971).Google Scholar
  21. 21.
    Koo, D.B. et al. Aberrant allocations of inner cell mass and yrophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492 (2002).CrossRefGoogle Scholar
  22. 22.
    Rosenkrans, Jr. C.F., Zeng, G.Q., Mcnamara, G.T., Schoff, P.K. & First, N.L. Development of bovine embryos in vitro as affected by energy substrates. Bio. Reprod. 49, 459–462 (1993).CrossRefGoogle Scholar
  23. 23.
    Wee, G. et al. Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134, 781–787 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.KAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations