BioChip Journal

, Volume 5, Issue 1, pp 72–77 | Cite as

DNA chip for species identification of Korean freshwater fish: A case study

  • Sungmin Kim
  • Hyeyoung Koo
  • Ji-Hoon Kim
  • Jin-Wook Jung
  • Seung Yong Hwang
  • Won Kim
Original Research

Abstract

DNA barcoding is a molecular diagnostic method for species identification that uses a single standardized DNA fragment. Remarkably, mitochondrial cytochrome c oxidase subunit I (COI) gene in animal species can be used for this purpose. For molecular identification, there are several approaches available based on varying properties such as sequence similarity, length of PCR products, and hybridization. We previously developed web-based Molecular Identification System for Fish (MISF), including 53 Korean freshwater fish species, based on a profile hidden Markov model and sequence similarity. In this study, we developed a DNA chip arrayed with 16 oligonucleotide probes to identify 11 selected species of Korean freshwater fish. The COI gene was quite suitable for designing species-specific oligonucleotide probes and a DNA chip arrayed with these probes showed high resolution for species identification. Therefore, the DNA chip using the COI gene can be further developed for different purposes by optimal species selection in biodiversity studies and environmental monitoring.

Keywords

DNA chip Freshwater fish Species identification DNA barcoding COI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tautz, D., Arctander, P., Minelli, A., Thomas, R. & Vogler, A. DNA points the way ahead in taxonomy. Nature 418, 479–479 (2002).CrossRefGoogle Scholar
  2. 2.
    Hebert, P. & Gregory, T. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).CrossRefGoogle Scholar
  3. 3.
    Schindel, D. & Miller, S. DNA barcoding a useful tool for taxonomists. Nature 435, 17 (2005).CrossRefGoogle Scholar
  4. 4.
    Hajibabaei, M., Janzen, D., Burns, J., Hallwachs, W. & Hebert, P. DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103, 968–971 (2006).CrossRefGoogle Scholar
  5. 5.
    Rock, J. et al. DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus. Antarctic Sci. 20, 253–262 (2008).CrossRefGoogle Scholar
  6. 6.
    Stahls, G. et al. COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Mol. Ecol. Resour. 9, 1431–1438 (2009).CrossRefGoogle Scholar
  7. 7.
    Hebert, P., Ratnasingham, S. & de Waard, J. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B 270, 96–99 (2003).CrossRefGoogle Scholar
  8. 8.
    Hubert, N. et al. Identifying Canadian freshwater fishes through DNA barcodes. PloS One 3, e2490 (2008).CrossRefGoogle Scholar
  9. 9.
    Moritz, C. & Cicero, C. DNA barcoding: promise and pitfalls. PLoS Biol. 2, 1529–1531 (2004).CrossRefGoogle Scholar
  10. 10.
    Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356 (2009).CrossRefGoogle Scholar
  11. 11.
    Ratnasingham, S. & Hebert, P. BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Resour. 7, 355–364 (2007).Google Scholar
  12. 12.
    Song, K., Jung, J., Koo, H. & Kim, W. Development of species-specific molecular marker as a tool for discrimination between Crucian Carp Gengorobuna (Carassius cuvieri) introduced from Japan and Korean native one (C. auratus). Korean J. Limnol. 40, 143–148 (2007).Google Scholar
  13. 13.
    Kochzius, M. et al. DNA microarrays for identifying fishes. Mar. Biotechnol. 10, 207–217 (2008).CrossRefGoogle Scholar
  14. 14.
    Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Google Scholar
  15. 15.
    Steinke, D., Vences, M., Salzburger, W. & Meyer, A. TaxI: a software tool for DNA barcoding using distance methods. Phil. Trans. R. Soc. B 360, 1975–1980 (2005).CrossRefGoogle Scholar
  16. 16.
    DasGupta, B., Konwar, K., Mandoiu, I. & Shvartsman, A. DNA-BAR: distinguisher selection for DNA barcoding. Bioinformatics 21, 3424–3426 (2005).CrossRefGoogle Scholar
  17. 17.
    Rach, J., DeSalle, R., Sarkar, I., Schierwater, B. & Hadrys, H. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc. Biol. Sci. 275, 237–247 (2008).CrossRefGoogle Scholar
  18. 18.
    Kim, S., Eo, H., Koo, H., Choi, J. & Kim, W. DNA barcode-based molecular identification system for fish species. Mol. Cells 30, 1–10 (2010).Google Scholar
  19. 19.
    Pfunder, M., Holzgang, O. & Frey, J. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol. Ecol. 13, 1277–1286 (2004).CrossRefGoogle Scholar
  20. 20.
    Engelmann, J. et al. Modelling cross-hybridization on phylogenetic DNA microarrays increases the detection power of closely related species. Mol. Ecol. Resour. 9, 83–93 (2009).CrossRefGoogle Scholar
  21. 21.
    Chung, I. et al. A DNA microarray for identification of selected Korean birds based on mitochondrial cytochrome c oxidase I gene sequences. Mol. Cells 30, 295–301 (2010).CrossRefGoogle Scholar
  22. 22.
    Park, J. et al. A DNA microarray for species identification of cetacean animals in Korean water. BioChip J. 4, 197–203 (2010).CrossRefGoogle Scholar
  23. 23.
    Summerbell, R. et al. Microcoding: the second step in DNA barcoding. Phil. Trans. R. Soc. B 360, 1897–1903 (2005).CrossRefGoogle Scholar
  24. 24.
    Hajibabaei, M., Singer, G., Clare, E. & Hebert, P. Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biology. 5, 24 (2007).CrossRefGoogle Scholar
  25. 25.
    Lee, H. et al. G. DNA chip evaluation as a diagnostic device. Current Applied Physics 5, 433–437 (2005).CrossRefGoogle Scholar
  26. 26.
    Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CrossRefGoogle Scholar
  27. 27.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).CrossRefGoogle Scholar
  28. 28.
    Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sungmin Kim
    • 1
  • Hyeyoung Koo
    • 2
  • Ji-Hoon Kim
    • 3
  • Jin-Wook Jung
    • 3
  • Seung Yong Hwang
    • 3
  • Won Kim
    • 1
    • 4
  1. 1.Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulKorea
  2. 2.Department of Biological ScienceSangji UniversityWonjuKorea
  3. 3.Department of BiochemistryHanyang University & GenoCheck Co., Ltd.Gyeonggi-doKorea
  4. 4.School of Biological SciencesSeoul National UniversitySeoulKorea

Personalised recommendations